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The shape of partial correlation matrices

Richard Artnera� , Paul P. Wellingerhofb� , Ginette Lafita , Tim Loossensa ,
Wolf Vanpaemela‡ , and Francis Tuerlinckxa‡

aKU Leuven - Faculty of Psychology and Educational Sciences, Leuven, Belgium; bEberhard Karls
Universit€at T€ubingen - Department of Psychology, Tubingen, Germany

ABSTRACT
The correlational structure of a set of variables is often conveniently
described by the pairwise partial correlations as they contain the
same information as the Pearson correlations with the advantage of
straightforward identifications of conditional linear independence.
For mathematical convenience, multiple matrix representations of
the pairwise partial correlations exist in the literature but their prop-
erties have not been investigated thoroughly. In this paper, we
derive necessary and sufficient conditions for the eigenvalues of dif-
ferently defined partial correlation matrices so that the correlation
structure is a valid one. Equipped with these conditions, we will
then emphasize the intricacies of algorithmic generations of correl-
ation structures via partial correlation matrices. Furthermore, we
examine the space of valid partial correlation structures and juxta-
pose it with the space of valid Pearson correlation structures. As
these spaces turn out to be equal in volume for every dimension
and equivalent with respect to rotation, a simple formula allows the
creation of valid partial correlation matrices by the use of current
algorithms for the generation and approximation of correlation
matrices. Lastly, we derive simple conditions on the partial correla-
tions for frequently assumed sparse structures.
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1. Introduction

Partial correlation coefficients are commonly used across a wide variety of research
fields, for instance, psychology and biology. Partial correlations are useful when dealing
with conditional (linear) dependence relations, as in Gaussian graphical models (e.g.,
Anandkumar et al. 2012; Ha and Sun 2014; Epskamp et al. 2018). The fact that such
partial correlation coefficients are much easier to interpret than the corresponding
bivariate correlations makes them very appealing. The ease of interpretation is derived
mainly from the property that a partial correlation of zero corresponds to conditional
independence for jointly normally distributed variables (as shown by Baba, Shibata, and
Sibuya 2004, Theorem 3, 663). More generally, a partial correlation of zero corresponds
to conditional linear independence for every random vector whose covariance matrix
exists (i.e., all marginal distributions have finite second moments). This convenient
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property of partial correlations is shared with (standardized) multiple regression coeffi-
cients. However, unlike partial correlations which are bounded by the interval [–1, 1],
(standardized) regression coefficients are unbounded, and that makes their magnitude much
harder to interpret.

For a collection of p variables, the pðp�1Þ
2 bivariate correlations are often conveniently

represented in a correlation matrix. This matrix arises by scaling the covariance matrix
of the p variables, and its properties are well-known (see e.g., Rousseeuw and

Molenberghs 1994). The set of the pðp�1Þ
2 partial correlations contains the same amount

of information as the correlation matrix asking for a similar compact representation for
them. Stemming from the fact that the partial correlation of a variable with itself is
undefined, a partial correlation matrix has been defined in multiple different ways.
However, the properties of such matrices have not yet been investigated, making the
uncritical use of algorithms that generate random matrices potentially dangerous.
By deriving necessary and sufficient conditions for different definitions of the partial

correlation matrix, we will show that the matrix representation allows for straightfor-
ward validity checks, and we discuss its implications with respect to the efficient and
correct usage of random matrix algorithms. The derived matrix properties will further
be used to derive restrictions on the partial correlations for frequently used graph struc-
tures. Lastly, the space of valid partial correlation structures will be examined and juxta-
posed with valid correlation structures.

2. Partial correlation matrices

Let X :¼ ðX1, , :::,XpÞ be any p-dimensional random vector with non singular covariance
matrix R ¼ ðrijÞi, j¼1, :::, p: Without any loss of generality we assume that X is mean-cen-

tered to shorten subsequent notation. For two random variables Xi,Xj 2 X the mean
square regression plane with respect to XnfXi,Xjg is respectively uniquely defined as
the following minimizer

argmin
bik2R8k2f1, :::, pgnfi, jg

Eð~�iÞ2 with~�i :¼ Xi �
X
k 6¼i, j

bikXk (2.1)

argmin
bjk2R8k2f1, :::, pgnfi, jg

Eð~�jÞ2 with~�j :¼ Xj �
X
k 6¼i, j

bjkXk (2.2)

The partial correlation qXiXi�XnfXi,Xjg (which we will abbreviate as ~qij) of Xi and Xj with

respect to XnfXi,Xjg is then defined as the Pearson correlation of the random variables
~�i and ~�j (see Cramer 1946, Definition 23.4.1, 306) and equal to

~qij :¼ qð~�i,~�jÞ ¼
Eð~�i ~�jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð~�i2ÞEð~�j2Þ
q (2.3)

since Eð~�iÞ ¼ Eð~�jÞ ¼ 0 as a result of Equations (2.1) and (2.2).
The following useful relation sometimes leads to confusion about the sign of the (esti-

mated) partial correlation coefficient (Antti and Puntanen 1983):
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�~qij ¼ qð�i, �jÞ ¼
Eð�i�jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð�i2ÞEð�j2Þ
p 8i, j 2 f1, :::, pg, i 6¼ j, (2.4)

with �i representing the residual of Xi when regressed on XnfXig :

arg min
bik2R8k2f1, :::, pgnfig

Eð�iÞ2 with �i :¼ Xi �
X
k 6¼i

bikXk (2.5)

Definition 1. For a p-dimensional random vector X with non singular covariance

matrix R let the partial correlation matrix ~R be defined as the negative scaled concen-
tration matrix (S):

~R :¼ �D�1
R�1R�1D�1

R�1 ¼: �S, (2.6)

with concentration matrix R�1 ¼ ðrijÞi, j¼1, :::, p and DR�1 :¼ ffiffiffiffiffiffiffiffiffiffi
rijdij

p� �
i, j¼1, :::, p

where dij

represents the Kronecker delta.
The justification of this definition stems from the fact that ~R ¼ ð~qijÞi, j¼1, :::, p then has

the partial correlation coefficients ~qij as its off-diagonal entries thereby mirroring the

correlation matrix R ¼ ðqðXi,XjÞÞi, j¼1, :::, p (see Lewis and Styan 1981)1 This relation

between the partial correlations and the scaled concentration matrix is often stated in
the case that X follows a multivariate normal distribution (e.g., Lauritzen 1996, 130),

but it holds true for any distribution with regular covariance matrix that ~Rij ¼ ~qij:

Potentially this originates in the confusion of the partial correlation coefficient and the
conditional correlation coefficient which happen to coincide only in case of multivariate
normality (Baba, Shibata, and Sibuya 2004). The fact that qð�i, �iÞ ¼ 1 further leads to

�~R ¼ S ¼ ðqð�i, �jÞÞi, j¼1, :::, p in light of Equation (2.4).

Any non degenerate covariance matrix R gives rise to one unique correlation matrix

R (via scaling to unit variance) and one unique partial correlation matrix ~R (via

Equation 2.6). The following two lemmata establishing the unique relation of R and ~R
allowing us to define a matrix to be a valid partial correlation matrix if it gives rise to a
valid correlation matrix.

Lemma 1. The partial correlation matrix ~R can also be computed from the correlation
matrix R as

~R ¼ f ðRÞ ¼ �D�1
R�1R�1D�1

R�1 : (2.7)

Proof. See Appendix. w

Lemma 2. (a) The correlation matrix R can be calculated from the partial correlation

matrix ~R as

R ¼ gð~RÞ ¼ D�1
S�1S�1D�1

S�1 , with S ¼ �~R: (2.8)

(b) The transformation function (2.7) is bijective and (2.8) its inverse.

Proof. See Appendix. w

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 4135



The partial correlation matrix as defined in Equation (2.6) is used by some authors
(e.g., Wong, Carter, and Kohn 2003; Stifanelli et al. 2013; Ha and Sun 2014). Other
authors, however, work with partial correlation matrices that feature ones on the diag-
onal (e.g., Sch€afer and Strimmer 2005; Marrelec et al. 2006; Lafit et al. 2019). Such
matrices are, for instance, generated by three R libraries (corpcor, ppcor, and GGMselect)
making a study of its properties useful.

Definition 2. For a p-dimensional random vector X with non singular covariance
matrix R let the partial correlation matrix �R be defined as

�R :¼ ~R þ 2Ip ¼ �Sþ 2Ip (2.9)

with Ip ¼ ðdijÞi, j¼1, :::, p being the identity matrix of size p.

Simply adding and subtracting 2Ip in Equations (2.7) and (2.8), respectively, shows

that �R, just like ~R, can be calculated via R and vice versa.
It now has to be established what properties a partial correlation matrix (e.g., ~R, �R)

has to fulfill. Consider, for example, a three-variable case with partial correlations
~q12�3 ¼ :7 and ~q13�2 ¼ :5: As will subsequently be shown it can then readily be seen that
it is impossible that ~q23�1 is equal to .6 by creating the following symmetric matrix

�Rc ¼
1 :7 :5
:7 1 :6
:5 :6 1

2
4

3
5

and calculating its eigenvalues (�k1 ¼ 2:2, �k2 ¼ 0:5, and �k3 ¼ 0:3 when rounded to
one decimal).
Using Equation (2.8) for the proposed partial correlation matrix �Rc would not result

in a real 3� 3 matrix since the square roots of the diagonal entries of

S�1
c ¼ �ð�Rc � 2IpÞ

� ��1 �
�1:23 �1:92 �1:77
�1:92 �1:44 �1:83
�1:77 �1:83 �0:98

2
4

3
5,

which determine the diagonal matrix DS�1
c
, are negative.

We will now derive necessary and sufficient conditions for the validity of the pro-
posed correlation structure for both, ~R and �R:

Proposition 1. (a) If R is a valid non degenerate p� p correlation matrix (i.e., symmetric,
all main diagonal elements equal to 1, off-diagonal values 2 ½�1, 1�, positive definite), the
corresponding partial correlation matrix ~R computed by Equation (2.7) is nega-
tive definite.
(b) If ~R is a negative definite, symmetric p� p matrix with main diagonal elements all

equal to �1 and off-diagonal values in ½�1, 1�, the matrix computed by Equation (2.8) is
a valid non degenerate correlation matrix R.

Proof. (a) The solutions to the equation

Aw ¼ kw
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are the eigenvectors w 2 R
p (excluding the zero vector) and eigenvalues k 2 R of a

square matrix A. If A is non singular, inversion yields

1
k
w ¼ A�1w: (2.10)

Accordingly, the inverse of the matrix R (all k > 0) is also positive definite (all 1
k > 0).

This in turn implies that the diagonal values of R�1 are positive, because, for positive
definite matrices, zTR�1z > 0 for all non zero z 2 R

p, including vectors

like z0 ¼ ð1, 0, :::, 0ÞT :
Taking the square root of the diagonal entries of R�1 will therefore result in positive

real numbers, which make up the diagonal elements of DR�1 : Since DR�1 is a diagonal

matrix, its diagonal entries are also its eigenvalues (because vectors like w0 ¼
ð1, 0, :::, 0ÞT satisfy the equation DR�1w ¼ kw) and thus DR�1 must be positive definite, as
well as D�1

R�1 :

As is pointed out by Seber (2008, Definition 16.7 (2), 330), two square matrices A
and B are congruent if there exists a non singular matrix M, such that

B ¼ MTAM:

Since D�1
R�1 is non singular and symmetric, R�1 and D�1

R�1R�1D�1
R�1 are congruent. From

Sylvester’s Law of Inertia (Sylvester 1852) it then follows that the symmetric and con-
gruent matrices R�1 and D�1

R�1R�1D�1
R�1 have the same number of positive, negative and

zero eigenvalues, that is, both of them are positive definite. Multiplying D�1
R�1R�1D�1

R�1 by
ð�1Þ then reverses the sign of all its eigenvalues as a consequence of the eigenvalue
equations (2.10) making ~R negative definite.
(b) Since ~R is negative definite all its eigenvalues are negative. Multiplying with ð�1Þ

then results in the positive definite matrix S ¼ �~R: Finally, by Sylvester’s Law of
Inertia, S�1 and D�1

S�1S�1D�1
S�1 ¼ R have the same amount of positive eigenvalues (all of

them) making R positive definite. Hence, if ~R is a partial correlation matrix the compu-
tation (2.8) results in a non degenerate correlation matrix R. �

Corollary 1. (a) If R is a valid non degenerate p� p correlation matrix (i.e., symmetric,
all main diagonal elements equal to 1, off-diagonal values 2 ½�1, 1�, positive definite), the
corresponding partial correlation matrix �R ¼ �D�1

R�1R�1D�1
R�1 þ 2Ip has eigenval-

ues �ki < 28i ¼ 1, :::, p:
(b) If �R is a symmetric p� p matrix with main diagonal elements all equal to þ 1, off-

diagonal values in ½�1, 1�, and all p eigenvalues �ki less than 2, the matrix R ¼
D�1

S�1S�1D�1
S�1 with S ¼ ��R þ 2Ip is a valid non degenerate correlation matrix.

Proof. (a) Due to Proposition 1 we know that all eigenvalues of ~R ¼ �R � 2Ip are nega-
tive. Adding 2Ip to a matrix increases all its eigenvalues by 2, as mentioned by Strang
(2016, 291). The reasoning behind this is simple: Take the two equations

2Ipw� ¼ 2w�

Aw ¼ kw,
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where A is still a square matrix, and add them to

Aw þ 2Ipw
� ¼ kw þ 2w�:

We can then set w� ¼ w, as all non zero vectors are eigenvectors of Ip, to get

ðAþ 2IpÞw ¼ ðkþ 2Þw: (2.11)

Consequently, �ki < 28i ¼ 1, :::, p holds for �R:
(b) Since all eigenvalues of �R are smaller than 2, Proposition 1 can be applied to the

negative definite matrix ~R ¼ �R � 2Ip: �

We now established a set of necessary and sufficient conditions that a candidate

matrix must fulfill to be a valid partial correlation matrix (~R, or �R). The conditions of

symmetry, all main diagonal elements equal to �1 (for ~R) or 1 (for �R), off-diagonal ele-

ments in ½�1, 1�, and eigenvalues smaller than 0 (for ~R) or 2 (for �R) are necessary,
since the partial correlation matrix corresponding to a valid correlation matrix by
Equation (2.7) must fulfill these conditions (Proposition/Corollary 1, a). They are also
sufficient, because the matrix resulting from Equation (2.8) then always constitutes a
valid, non degenerate correlation matrix (Proposition/Corollary 1, b).

3. Implications

3.1. Algorithmic generation of (random) partial correlation structures

As there are multiple definitions for partial correlation matrices used in the literature,
care for their respective properties should be taken. A partial correlation matrix defined

as ~R þ Ip, as done in Anandkumar et al. (2012), for instance, must have eigenvalues
smaller than 1, as can be seen at once by looking at Corollary 1. In the case of random
matrix generation, we advocate to thoroughly investigate and explicitly mention the
restrictions the used algorithm has on the partial correlation structure. Sch€afer and
Strimmer (2005) and Tenenhaus et al. (2010), for example, both use an algorithm pro-
posed in Sch€afer and Strimmer (2005) to generate positive definite matrices with þ 1’s
on the main diagonal and off-diagonal elements in ½�1, 1� to generate sparse partial cor-
relation structures without offering a discussion of its properties.
A concise description of the algorithm proposed in Sch€afer and Strimmer (2005) goes

as follows:

1. Choose � > 0, g 2 ½0, 1�, and p 2 N such that gt 2 N for t :¼ pðp�1Þ
2 :

2. Generate the p � p zero matrix A.
3. Randomly select gt of the t upper-diagonal elements of A and replace them with

random draws from the continuous uniform distribution on the interval ½�1, 1�:
4. Generate a symmetric matrix M ¼ ðmijÞ via M ¼ Aþ AT and set its diagonal

elements to mjj ¼
Pp

i¼1 jmijj þ �:

5. Scale M via D�1
M MD�1

M ¼: R with DM :¼ ffiffiffiffiffiffiffiffiffiffiffi
mijdij

p� �
i, j¼1, :::, p

and dij the Kronecker

delta to receive a symmetric matrix R with þ 1’s on the main diagonal.
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Due to its construction, M is symmetric and diagonally dominant with strictly posi-
tive elements on the main diagonal. From Gershgorin’s circle theorem (see Gershgorin
1931, Satz II, 751) it then follows that M is positive definite. Hence, this algorithm gen-
erates positive definite matrices R with þ 1’s on the main diagonal and off-diagonal ele-
ments in ½�1, 1� regardless of the chosen parameters �, g, and p. As we have shown in
Corollary 1, the positive definiteness of matrices with þ 1’s on the main diagonal is not
sufficient for valid partial correlation structures (all eigenvalues need to be smaller than
2). However, neither Sch€afer and Strimmer (2005) nor Tenenhaus et al. (2010) prove
that all eigenvalues of the resulting matrix R are smaller than 2. That being said, results
from Monte Carlo simulations suggest that this algorithm indeed always produces valid
partial correlation matrices �R:
As positive definiteness is not just not sufficient, it is also not necessary (an indefinite

symmetric matrix with þ 1’s on the main diagonal and off-diagonal elements in [–1,1]
can represent a valid partial correlation structure), this algorithm restricts certain valid
(sparse) structures. Moreover, it renders certain types of partial correlation structures
disproportionately more likely as can be seen in Figure 1. In the case of g ¼ 0:02 (top),
the smallest eigenvalue is likely to be extremely close to zero and the largest eigenvalue
is likely to be extremely close to two. In the case of g ¼ 0:05 (bottom), we find that
both the distribution of the smallest and the distribution of the largest eigenvalue
are bimodal.

Figure 1. Distribution of the smallest and largest eigenvalue of 10000 PC matrices generated by the
Algorithm proposed in Sch€afer and Strimmer (2005) with � ¼ 0:0001 for p¼ 100 and g ¼ 0:02 (top)
and p¼ 100 and g ¼ 0:05 (bottom).
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The following direct consequence of Proposition 1 may be useful in the development
of new and better-understood algorithms.

Corollary 2. Given a valid non degenerate correlation matrix R, a valid partial correl-

ation matrix ~R
�
can easily be constructed by

~R
� ¼ �R: (3.1)

Proof. Multiplying R by ð�1Þ renders �R negative definite and symmetric with a nega-
tive unit-diagonal and off-diagonal values in [–1, 1]. �

Corollary 2 tells us that changing the signs of all pðp�1Þ
2 Pearson correlations of a set

of p variables will always result in a valid partial correlation structure for p random var-

iables. Clearly, ~R
�
is not the partial correlation matrix that structurally corresponds to

the particular correlation matrix R it has been derived from. However, this transform-
ation allows for the generation of valid partial correlation matrices by the use of existing
algorithms for R or its scaled version R (e.g., Knol and ten Berge 1989; Lewandowski,
Kurowicka, and Joe 2009; Pourahmadi and Wang 2015), where first a valid correlation
matrix is generated and second a valid partial correlation matrix is obtained by simply
switching the signs of all off-diagonal entries. Contrary to this, generating partial correl-
ation matrices via Equation (2.7) is computationally more intricate as it involves
matrix inversions.
As shown in the next section, the spaces of valid correlation and partial correlation

matrices are of equal volume. Hence, the principles by which an algorithm generates
valid correlation matrices must also apply to this minor extension with the only differ-
ence that the signs of the results are opposite.

3.2. The space of valid partial correlation structures

The set of conditions derived in Proposition 1 and Corollary 1 facilitate simple validity
checks for conditional linear dependence structures. However, one may wonder how
likely it is that a random, symmetric p� p matrix Mp with negative unit-diagonal and
off-diagonal elements uniformly distributed between �1 and 1, constitutes a valid par-
tial correlation matrix. This question has been investigated for correlation matrices by
B€ohm and Hornik (2014), who derived an exact analytic formula for the probability of
Mp representing a valid p� p correlation matrix R:

PðMp is valid RÞ ¼ 2
Pp�1

i¼1
i2 �Qp�1

i¼1 Bðiþ1
2 , iþ1

2 Þ
� �i

2t
, (3.2)

with Euler’s beta function B(x, y) and t ¼ pðp�1Þ
2 : This quotient consists of two volumes:

The volume of “valid” column vectors 2 R
t in the numerator (specified by Joe 2006)

and the volume of the t-dimensional cube with edge length 2 in the denominator.

Proposition 2. The probabilities given by Equation (3.2) also apply to the space of valid
partial correlation matrices (i.e., PðMp is valid ~RÞ ¼ PðMp is valid RÞ8p � 2).
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Proof. From Corollary 2 we know that ~R
�

is a valid partial correlation matrix.

Representing the respective t off-diagonal elements of ~R
�
in the form of a column vec-

tor, Equation (3.1) can be rewritten as

~q12
~q13

..

.

~qðp�1Þp

2
66664

3
77775 ¼

�1 0 � � � 0
0 �1 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � �1

2
6664

3
7775

q12
q13
..
.

qðp�1Þp

2
66664

3
77775:

This matrix transformation constitutes a reflection through the origin, with �It as the
reflection matrix and it applies to all valid (partial) correlation matrices, since Equation
(3.1) is clearly bijective. The absolute determinant of �It is one for every valid (partial)
correlation matrix irrespective of t, hence, the preservation of volume. �

Proposition 2 tells us that the numerator in Equation (3.2) is equal for partial correl-
ation matrices. Inspecting Equation (3.2) and the precise probabilities for the dimen-
sions p¼ 2 to p¼ 10, on display in Table 1, reveals a severe curse of dimensionality.
The valid space for 3� 3 correlation matrices has been plotted by Rousseeuw and

Molenberghs (1994) and referred to as “elliptical tetrahedron.” Figure 2 shows the pres-
ervation of volume as well as a point reflection through the origin for 3� 3 partial cor-
relation matrices. For p> 3, the point reflection through the origin holds too.

3.2.1. The importance of the determinant
The aim of this section is to highlight the usefulness of eigenvalues and the determinant
when categorizing partial correlation structures. For every p� p correlation matrix R we

know that all eigenvalues ki are positive and that they sum to p since
Pp

i ki ¼ trðRÞ ¼Pp
i 1 ¼ p: Therefore, if one eigenvalue increases, at least one other eigenvalue must

decrease. Since detðRÞ ¼ Qp
i ki it follows that 0 < detðRÞ 	 1 with the maximum of 1

being reached if and only if R ¼ Ip (i.e., if all correlations are zero).
The partial correlation matrix �R, unlike R, can be indefinite (i.e., at least two eigen-

values �ki have opposite signs) and the bounds for detð�RÞ depend on p. Therefore it

pays to work with ~R instead. All eigenvalues ~ki of ~R are negative and
Pp

i
~ki ¼ trð~RÞ ¼Pp

i ð�1Þ ¼ �p: Since detð~RÞ ¼ Qp
i
~ki we further have �1 	 detð~RÞ < 0 for odd p and

0 < detð~RÞ 	 1 for even p. Hence, 0 < jdetð~RÞj 	 1 for every p.

Table 1. A curse of dimensionality.
p PðMp is valid ~RÞ
2 1.0000000000000000
3 0.6168502750680850
4 0.1827704518720251
5 0.0220044523675988
6 0.0009495201911854
7 0.0000132838387928
8 0.0000000554226343
9 0.0000000000641964
10 0.0000000000000194
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Figure 3 displays subspaces for R and ~R for p¼ 3 defined via the inequalities detðRÞ � x

and �detð~RÞ � x, respectively, for x 2 f0:0, 0:2, 0:4, 0:6, 0:8g (the corresponding colors
are: yellow, orange, red, blue, black). For x¼ 0 the inequality generates the whole space of
partial correlation structures (compare with Figure 2) because the first principal minor is
always negative and the second principal minor is always positive. Hence, a negative deter-
minant is equivalent to negative definiteness via Sylvester’s criterion.
Figure 3 shows that jdetð~RÞj approaches zero as the Euclidean norm of the three-

dimensional vector containing the partial correlations increases, although not at an
equal rate in all directions. Due to its monotonic decrease when moving away from the
origin, it can be seen as a measure of extremity – the higher the partial correlations, the
lower the absolute determinant. For more information regarding the use of the deter-
minant to describe the amount of multicollinearity, the reader is referred to Pe~na and
Rodrı�guez (2003).

3.3. Sparse partial correlation structures

The obtained results allow the derivation for simple restrictions for partial correlations
in sparse settings, which are commonly assumed in the field of graphical models.
Three types of sparse graphical model structures are chain, ring, and star graphs (see
Figure 4). In what follows, we will study the general case of p� p partial correlation

Figure 2. Spaces of valid 3� 3 correlation (black) and partial correlation (blue) matrices. Note the
rotation of the third graph, revealing the geometric equality of the two shapes.

Figure 3. Subspaces with respect to the determinant for valid 3� 3 correlation (left) and partial cor-
relation (right) matrices.
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matrices ~R for these three graph types under the assumption that all partial correlations
have the same value ~q (with j~qj 2 ð0, 1Þ).

3.3.1. Chain graphs
A chain graph for p variables corresponds to a tridiagonal partial correlation matrix ~R ¼
ð~qijÞi, j¼1, :::, p with ~qij ¼ �1 for i ¼ j, ~qij ¼ ~q for ji� jj ¼ 1, and ~qij ¼ 0 for ji� jj > 1:

The eigenvalues kj of such a matrix equal (Noschese, Pasquini, and Reichel 2013): kj ¼
�1þ 2j~qj cos pj

pþ1

� �
for j ¼ 1, :::, p: Due to Proposition 1 we have that �1þ

2j~qj cos pj
pþ1

� �
< 0 for j ¼ 1, :::, p for any valid partial correlation matrix, from which it

follows that

j~qj < 1

2 cos pj
pþ1

� � for j ¼ 1, :::, p: (3.3)

Because the argument of the cosine function runs from 0 < p
pþ1 to pp

pþ1 < p and the

cosine function is monotonically decreasing within that interval, we only have to evalu-

ate the inequality at p
pþ1 : Hence, for p¼ 3, j~qj < 1

2 cos p
4ð Þ ¼

ffiffi
2

p
2 : For larger values of p, we

can use the small angle approximation to the cosine: cos ðxÞ � 1� x2
2 : This yields that

j~qj < 1
2� p2

ðpþ1Þ2
� �p, �p > 0: The larger p, the better the approximation (i.e., �p ! 0 for

p ! 1) and for very large p, the upper bound basically becomes 1
2 :

3.3.2. Ring graphs
A ring graph of p variables corresponds to a symmetric circulant partial correlation matrix
~R ¼ ð~qijÞi, j¼1, :::, p with ~qij ¼ �1 for i ¼ j, ~qij ¼ ~q for ji� jj 2 f1, p� 1g, and ~qij ¼
0 for 1 < ji� jj < p� 1: For such a matrix the eigenvalues are kj ¼ �1þ 2~q cos 2pj

p

� �
for

j ¼ 1, :::, p: A valid partial correlation structure is then equivalent to ~q cos 2pj
p

� �
< 1

2 for

j ¼ 1, :::, p due to Proposition 1. Since these inequalities are trivially fulfilled if the two fac-
tors have opposite signs, we only have to consider the case of equal signs. Taking the abso-
lute value on both sides of the inequalities we find:

Figure 4. Some special graphical structures for four variables: (a) chain structure, (b) ring structure
and (c) star structure. These three structures correspond to special partial correlation matrices.
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j~qj < 1
2
, (3.4)

because j cos 2pj
p

� �
	 1j for j ¼ 1, :::, p: Since the bounds in (3.4) do not depend on the

dimension p, valid ring structures can easily be created. The fact that the bounds on ~q
in (3.3) converge to 1

2 makes intuitive sense since every chain graph is just a ring graph
minus one edge. Whereas a long chain graph and a ring graph with the same ~q are
very similar, the missing edge makes a difference for small number of variables.

3.3.3. Star graphs
As a last special structure, assume a star graph where the first variable is equally strong

connected to all other variables and no other edges exist (see Figure 4). In this case, ~R
has a symmetric arrowhead structure:

~R ¼ �1 r
rT �Ip�1

� �
:

with r ¼ ~q1p�1 and 1p�1 the ðp� 1Þ-dimensional unit vector. The eigenvalues ~k of ~R

are the roots of the characteristic polynomial of ~R :

~k 2 R : det
ð�1� ~kÞIp�1 r

rT �1� ~k

" #
¼ 0:

Using a classical result for the determinant of block matrices (e.g., Harville 1998,
Theorem 13.3.8) we get

det
ð�1� ~kÞIp�1 r

rT �1� ~k

" #
¼ det ð�1� ~kÞIp�1

h i
det ð�1� ~kÞ � rTðð�1� ~kÞIp�1Þ�1r

h i

¼ ð�1� ~kÞp�1det ð�1� ~kÞ � ð�1� ~kÞ�1~q2ðp� 1Þ
h i

¼ ð�1� ~kÞp�2 ð�1� ~kÞ2 � ~q2ðp� 1Þ
h i

:

Root ~k ¼ �1 has multiplicity p� 2. Solving

ð�1� ~kÞ2 � ~q2ðp� 1Þ ¼ 0:

for ~k determines the remaining two roots:

~k1, 2 ¼ �16~q
ffiffiffiffiffiffiffiffiffiffiffi
p� 1

p
:

As a result of Proposition 1 it then holds that

j~qj < 1ffiffiffiffiffiffiffiffiffiffiffi
p� 1

p : (3.5)

For star graphs, the upper limit for the absolute value of ~q converges to zero with an
increase in the number of variables, which makes them very restrictive in contrast to
chain and ring structures.
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4. Concluding remarks

Partial correlations and the corresponding matrices are used in different settings in
applied statistics, such as Gaussian graphical models and directed acyclic graphs
(DAGs). This article aimed at the clarification of common misconceptions about partial
correlations stemming from a scattered literature. Through precise definitions of partial
correlation matrices, we were able to derive their properties, which led to several
implications.
A first important implication is that when generating random partial correlation

structures, caution is advised, as only a careful examination of the characteristics of the
used algorithm allows an assessment of the generalizability of conclusions drawn from
the generated data. In particular, positive definiteness of the commonly used symmetric
matrix with þ 1’s on the main diagonal and the partial correlations as its off-diagonal
elements (see, e.g., Sch€afer and Strimmer 2005; Tenenhaus et al. 2010) is neither neces-
sary nor sufficient for the validity of the correlation structure. Generating only positive
definite matrices �R is particularly restrictive in non sparse and high-dimensional set-
tings: The probability that a valid 5� 5 matrix �R is positive definite is approximately
6% if sampled uniformly over the whole valid space. For a valid 7� 7 matrix it is less
than 0.1% and for a valid 9� 9 matrix it is already less than 0.0001%.2 As algorithmic
generation of valid partial correlation structures is useful in many domains future
research on existing algorithms, particularly on elaborate algorithms that generate a ran-
dom number of non zero partial correlations as used for the study of Erd€os–R�enyi
graph models (Erd}os and R�enyi 1960), as well as the development of new algorithms, is
much needed.
A second implication is that the spaces of valid correlation and partial correlation

matrices have the same volume regardless of dimension since they are point reflections
through the origin of one another. This relation allows the (random) generation of valid
partial correlation structures by switching the sign of valid Pearson correlation struc-
tures generated by existing algorithms. However, the distributional properties of the
resulting algorithm then need to be investigated thoroughly.
A final implication is that it allowed the derivation of simple restrictions on the par-

tial correlations for certain commonly used types of sparse structures. Naturally, this
work could be extended in the future to other types of sparse structures.

Notes

1. Strictly speaking Lewis and Styan (1981) only proved that ~R1, 2 ¼ ~q12: However, by pre- and
post-multiplying R with permutation matrices UT and U such that the i-th and j-th row/
column respectively become the 1-st and 2-nd row/column we find that ~Ri, j ¼ ~qij
since ðUTRUÞ�1

12 ¼ UTR�1U12 ¼ R�1
ij :

2. These results were generated by repeatedly generating random partial correlation matrices in
d dimensions in R (R Core Team 2018) via cor2pcor(rcorrmatrix(d)).
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Appendix

A. Operators

For the subsequent formal proofs, we introduce the following operators.

A.1. Pth Hadamard product
The first operator works on (only positive) matrices and extends the mechanism of the “simple”
Hadamard product (HP) (see Seber 2008, Definiton 11.12, p. 251). For two matrices T,U 2
R

n�m
þ with T ¼ ½tik� and U ¼ ½uik�, the HP is defined as T
U ¼ ½tikuik�, for i ¼ 1, :::, n and k ¼

1, :::,m: The said extension now describes a formalization of the pth HP of a matrix T with itself:
T
p ¼ ½tpik�, where p 2 R: For example, taking the square root of each element would be
expressed as T
1=2 ¼ ½t1=2ik �: For readability, we will write this as

ffiffiffiffi
T

p
:

A.2. diagX and diagC
The other two operators are closely related. diagXðAÞ extracts the diagonal elements of a square
matrix A, resulting in a vector ½a11, :::, ann�T , with aii the ith diagonal entry of A, i ¼ 1, :::, n:
Oppositely, diagCðzÞ creates a diagonal matrix, which ith diagonal entry equals the value zi of the
vector z 2 R

n: For diagonal matrices, both operators are the inverse function of the other one.
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A.3. Properties
The following properties apply to the operators T
p, diagX and diagC, as they were defined above,
for all T, U 2 R

n�m
þ , v, z 2 R

n, A 2 R
n�n and diagonal matrices D 2 R

n�n, respectively:
(P1.1)ðT
UÞ
p ¼ T
p
U
p

(P1.2)ðT
pÞ
1=p ¼ T
(P1.3) diagCðvÞdiagCðzÞ ¼ diagCðzÞdiagCðvÞ ¼ diagCðz
vÞ
(P1.4) diagXðADÞ ¼ diagXðDAÞ ¼ diagXðDÞ
diagXðAÞ

(P1.1) and (P1.2) readily follow from power laws:

ðX
YÞ
p ¼ ðxijyijÞp
� �

¼ xpijy
p
ij

h i
¼ X
p
Y
p

ðX
pÞ
1=p ¼ xpij
h i
1=p

¼ ðxpijÞ1=p
h i

¼ X

(P1.3) is true because the matrix product of two diagonal matrices does essentially the same oper-
ations as the HP of two vectors, as all off-diagonal entries are zero. The HP is clearly commuta-
tive, as are diagonal matrices with other diagonal matrices.

In the matrix product AD of (P1.4), D does not operate only on A’s diagonal of course,
instead, each element of the jth column of A gets multiplied by the ith diagonal element of D.
Nevertheless (P1.4) always holds since

diagXðADÞ ¼ a11d1, :::, anndn½ �T

¼ d1a11, :::, dnann½ �T
¼ diagXðDAÞ
¼ diagXðDÞ
diagXðAÞ

with ajj the jth diagonal element of A, j ¼ 1, :::, n:

B. Formal definition of scaling matrices

For a square matrix M we define the scaling matrix D�1
M as the inverse of

DM :¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðMÞ

q� �

C. Proof of Lemma 1

For a regular covariance matrix R the correlation matrix is defined as

R :¼ D�1
R RD�1

R , (C.1)

which can be rearranged to

R ¼ DRRDR:

Inverting then yields

R�1 ¼ D�1
R R�1D�1

R : (C.2)
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Inserting Equation (C.2) in Equation (2.6) gives

~R ¼ �D�1
R�1D�1

R R�1D�1
R D�1

R�1 ,

which reduces to the proof to showing that

D�1
R�1 ¼ D�1

R�1D�1
R ¼ D�1

R D�1
R�1 , (C.3)

From inserting the inverse of Equation (C.1) into the definition of DR�1 , and from (P1.1) to
(P1.4) and the commutativity of the HP, it follows that

DR�1 ¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðDRR�1DRÞ

q� �

¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðdiagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q� �
R�1diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q� �
Þ

s24
3
5

¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðdiagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q� �
R�1diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q� �
Þ

s24
3
5

¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðdiagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q� �
Þ
diagXðR�1Þ
diagXðdiagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q� �
Þ

s24
3
5

¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðR�1Þ
diagXðdiagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q� �
diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q� �
Þ

s24
3
5

¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðR�1Þ
diagXðdiagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q� �
Þ

s24
3
5

¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðR�1Þ
diagXðRÞ

q� �

¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðR�1Þ

q



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q� �

¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðR�1Þ

q� �
diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðRÞ

q� �
¼ DR�1DR:

Inverting this relation then leads to Equation (C.3) since DR�1DR ¼ DRDR�1 due to the commu-
nativity of diagonal matrices. �

D. Proof of Lemma 2

(a): From Equations (2.6) and (2.7) we have

~R ¼ �S ¼ �D�1
R�1R�1D�1

R�1 , (D.1)

and it becomes clear that R can be computed from ~R if DR�1 is known. In particular, we have

DR�1SDR�1 ¼ R�1

which inverts to

R ¼ D�1
R�1S�1D�1

R�1 : (D.2)
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From this, Equation (2.8) follows if we can show that

DS�1 ¼ DR�1 : (D.3)

Now, by using (P1.1) to (P1.4) once again, inserting a rearranged Equation (D.2) for S�1 and the
fact that the diagonal of R is a vector of ones, we get

DS�1 ¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðDR�1RDR�1Þ

q� �

¼ diagC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagXðDR�1Þ
diagXðRÞ
diagXðDR�1Þ

q� �
¼ diagC diagXðDR�1Þ� �
¼ DR�1 :

(b): Using Equation (D.3) we find that

gðf ðRÞÞ ¼ gð�D�1
R�1R�1D�1

R�1Þ
¼ D�1

S�1ð�ð�D�1
R�1R�1D�1

R�1ÞÞ�1D�1
S�1

¼ D�1
S�1ðD�1

R�1R�1D�1
R�1Þ�1D�1

S�1

¼ D�1
S�1DR�1RDR�1D�1

S�1

¼ R,

and conversely

f ðgð~RÞÞ ¼ f ðD�1
S�1ð�~RÞ�1D�1

S�1Þ
¼ �D�1

R�1ðD�1
S�1ð�~RÞ�1D�1

S�1Þ�1D�1
R�1

¼ �D�1
R�1DS�1ð�~RÞDS�1D�1

R�1

¼ �ð�~RÞ
¼ ~R �
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