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RANDOM ITEM IRT MODELS
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It is common practice in IRT to consider items as fixed and persons as random. Both, continuous
and categorical person parameters are most often random variables, whereas for items only continuous
parameters are used and they are commonly of the fixed type, although exceptions occur. It is shown in
the present article that random item parameters make sense theoretically, and that in practice the random
item approach is promising to handle several issues, such as the measurement of persons, the explanation
of item difficulties, and trouble shooting with respect to DIF. In correspondence with these issues, three
parts are included. All three rely on the Rasch model as the simplest model to study, and the same data
set is used for all applications. First, it is shown that the Rasch model with fixed persons and random
items is an interesting measurement model, both, in theory, and for its goodness of fit. Second, the linear
logistic test model with an error term is introduced, so that the explanation of the item difficulties based
on the item properties does not need to be perfect. Finally, two more models are presented: the random
item profile model (RIP) and the random item mixture model (RIM). In the RIP, DIF is not considered
a discrete phenomenon, and when a robust regression approach based on the RIP difficulties is applied,
quite good DIF identification results are obtained. In the RIM, no prior anchor sets are defined, but instead
a latent DIF class of items is used, so that posterior anchoring is realized (anchoring based on the item
mixture). It is shown that both approaches are promising for the identification of DIF.
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The parameters in IRT models are of various kinds. The most common kinds are continu-
ous, and either fixed or random. For example, both, abilities and difficulties are continuous in the
common IRT application. Although most models work with continuous parameters, an important
class of models contains also categorical parameters in the form of a categorical random variable
for the latent class or mixture component membership. Well-known recent variants of the mixture
model family are the cognitive diagnostic models (CDM) (Roussos, Templin & Henson, 2007).
For both, continuous and categorical parameters, persons are mostly treated as random. Abilities
are seen as random effects, and latent class membership is also a random variable. This is in
contrast with how items are almost always treated as fixed. Random item parameters are uncom-
mon. The purpose of this manuscript is to illustrate that random item parameters, continuous and
categorical, can make sense, and can be a useful tool to solve problems that remained unsolved
thus far. The illustrations are meant as preliminary explorations based on the data set used by De
Boeck and Wilson (2004). Random item models are rather new territory in psychometrics and
require further study. Here, it is shown they are promising.

1. Short History of Random Items

There is a little tradition growing with respect to random item parameters. The origin can
be found in the need of psycholinguists to counter the “language-as-fixed-effect fallacy” (Clark,
1973).
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. . . it does not take into account the fact that the items are sampled from a larger
population of items. . . . leads to sampling variance that must be taken into account.
Otherwise, this variance will be confounded with the effect of the treatment variable.
(Raaijmakers, Schrijnemakers, & Gremmen, 1999, p. 416)

The issue was first discussed by Coleman (1964). A recent publication that can be seen in this
line is from Rouder, Lu, Speckman, Sun, Morey, and Naveh-Benjamin (2007).

In the psychometric literature, the issue of random items has been discussed by researchers
interested in the change of abilities over time, using a longitudinal design (Albers, Does, Ombos,
& Janssen, 1989). In such designs, one may not repeat the same items, and the alternative is
to draw nonoverlapping random samples from the same population of items. The approach was
described by Tan, Ambergen, Does, and Imbos (1999) as follows:

It can be argued that the item difficulties can be considered as outcomes of a random
variable with some underlying distribution, possibly the normal distribution. . . . As
a consequence the item parameters can be integrated out. (p. 211)

The main motive for the most recent appearance of random item approaches in the literature
is handling item families. Item families are sets of items with sufficient communalities within
the set and sufficient differentiation from other sets, in order to (1) consider the items from
the same family as being sampled from the same population, a different one depending on the
family; (2) concentrate on the family parameters, which are distribution parameters (family mean
and variance), instead of concentrating on item-specific parameters. The item family concept is
often based on the principle of item generation (Bejar, 1993; Embretson, 1999), which has been
called also “item cloning” (Glas & van der Linden, 2003) and “AIG—automatic item generation”
(Sinharay, Johnson, & Williamson, 2003), but it can also rely on the notion of an achievement
target being expressed in a set of items that represents the target (Janssen, Tuerlinckx, Meulders,
& De Boeck, 2000). An interesting asset is that one can generalize to other items from the same
family. Most studies share that a Bayesian estimation method is used, but they differ in the model
that is used: a 2P normal ogive model (Janssen et al., 2000), a 3PL (Glas & van der Linden, 2003;
Sinharay et al., 2003), a generalized partial credit model (Johnson & Sinharay, 2005). Van den
Noortgate, De Boeck, and Meulders (2003) use a 1PL model and two approximative estimation
methods (PQL from GLIMMIX, and PQL2 from MLwiN).

In summation, from the literature there seem to be three specific reasons for being interested
in random item models: the clearly random nature of the items, such as randomly drawn words
from a vocabulary; the study of ability change in a longitudinal design with randomly drawn
item samples; and modeling item families. More generally, and underlying each of these, is the
generalizability potential of random item models. The argument is spelled out in its various
aspects by Briggs and Wilson (2007) in their article on the “Generalizability in Item Response
Modeling” (GIRM) approach.

Although random item IRT models may be a beginning trend, the vast majority of studies
still treats items as fixed. It will be argued here that treating items as random is a general tool,
with substantial advantages in various respects to be illustrated further on, reaching beyond the
studies reported thus far. Most likely, there are still many other issues where random item IRT
models can shed new light.

1.1. The Basic Illustrative Model

For the sake of simplicity, we will deal with the Rasch model for binary responses, in which
the logit of the probability of a 1-response is defined as the simple sum of the ability of the person
and the easiness of the item, or minus the difficulty:

ηpi = θp − βi, (0)



PAUL DE BOECK 535

where ηpi is ln(Pr(Ypi = 1)/Pr(Ypi = 0)), and Ypi is the response of person p (p = 1, . . . ,P )
to item i (i = 1, . . . , I ), θp is the ability of person p, βi is the difficulty of item i.

This model can easily be expanded with a degree of discrimination per item, by inserting a
parameter αi as a weight of θp , yielding a 2PL model or Birnbaum model, by inserting a guessing
parameter, yielding the 3PL, but also by expanding Ypi into a multicategorical variable, either
with ordered categories or not, so that models such as the partial credit model and the like can
be considered. However, these extensions will not be implemented here, because we first want
to explore the rather unknown territory of random items with a rather simple and robust model,
such as the Rasch model for binary responses.

2. Why Items May Be Considered Random Some of the Time

Apart from the potential of the random approach to solve problems and to open new perspec-
tives, also two more theoretical reasons may be put forward for why items may be considered
random some of the time.

The first reason for treating elements as random is that they are drawn from a population.
The population argument seems to apply in a natural way for persons. Most populations one can
think of, have to be subdivided into much specific subpopulations for the common assumption of
a normal distribution to hold. For example, sometimes specifications up to one’s ethnicity, gen-
der, education, profession, etc. are necessary. In a well-developed design, the remaining random
variation may be rather moderate, which means that the range of the corresponding populations
is rather small. In terms of the analogy with items, the person populations are sometimes as
specific as item families. An important difference between persons and items is that persons do
and items do not pre-exist before they are “drawn.” However, there are some preexisting item
populations. For example, each language provides us with a vocabulary, and with the advent
of computer adaptive testing, items banks are built which may be considered item populations.
In the field of educational measurement, the concept of a “universe” or “domain” has been put
forward in the context of criterion-referenced measurement (Hively, Patterson, & Page, 1968;
Popham, 1978). Furthermore, item generation can be seen as formally equivalent with drawing
from a theoretical population. Each generation is a draw. If the items are generated by item writ-
ers, they are generated with some concept in mind, perhaps only in an implicit and vague way.
On the other hand, when the items are automatically generated, sometimes on-the-fly, an explicit
concept is used (Bejar, Lawless, Morley, Wagner, Bennett, & Revuelta, 2003; Embretson, 1999).
The concept specifications delineate the populations. One concept can lead to several populations
depending on the specifications, sometimes very specific, almost as specific as a single item, for
example, as in item cloning (Glas & van der Linden, 2003). The set of possibly generated items
is a population.

The second reason for treating elements as random is the uncertainty about the parameters.
The uncertainty argument leads to the idea of a prior distribution, expressing the possible varia-
tion before having more information. After obtaining information from the data, the uncertainty
can be reduced, but if a prior distribution is used with unknown parameters (e.g., the variance),
then one can estimate the distribution. This distribution is equivalent with the one that expresses
the prior uncertainty, and also equivalent with a population distribution as if the elements were
random. In a fully Bayesian approach, the parameters of the distribution are themselves provided
with a prior distribution, one with hyperparameters.

All this said, random item models can make sense also from a more fundamental, theoret-
ical point of view. The theoretical reasons for random items add to the justification of using a
random items approach for more practical reasons, as a useful perspective on various issues in
psychometrics to be shown in the following.
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3. Three Issues

From a more practical point of view, we will concentrate now on three issues where random
item models may help. The first issue is the measurement of people’s ability using their item
responses. Commonly, a fixed item and random person approach is used; the so-called marginal
maximum likelihood method:

ηpi |θp = θp − βi and θp ∼ N
(
μθ,σ

2
θ

)
, (1a)

where μθ and σ 2
θ are the mean and variance, respectively, of the ability distribution.

The estimation of this model yields estimates for the item difficulties and estimates for the
mean and variance of the person distribution. It has two serious drawbacks given the purpose
of its use. First, not the individual persons but the individual items are being measured. An
additional step is required to measure the individual persons, assuming the item difficulties are
known (e.g., Bock & Mislevy, 1982). Second, the approach lends itself to a generalization over
persons for the measurement of the items, whereas in fact a generalization over items is wanted
for the measurement of persons. The ideal approach would be one with fixed person effects and
random item effects:

ηpi |βi = θp − βi and βi ∼ N
(
μβ,σ 2

β

)
, (1b)

where μβ and σ 2
β are the mean and variance, respectively, of the difficulty distribution.

This person measurement model would yield direct estimates of the person abilities and
is appropriate to generalize this measurement over items. This does not mean that for other
purposes, the model of (1a) cannot be the ideal approach.

The second issue is the explanation of item difficulties. A common model for this purpose
is the linear logistic test model (LLTM) (Fischer, 1973). The LLTM defines the difficulties as
a linear function of item properties specified in the property matrix. These can be item design
factors, but in general, any type of item covariates

βi =
Q∑

q=1

βqXiq, (2a)

where Xiq is the value of item i on property q , and βq is the weight of property q (q = 1, . . . ,Q)
to determine the difficulty βi .

Unfortunately, the LLTM is a rather unrealistic model because it implies that the explanation
of the item difficulty is perfect, whereas this is almost never the case. Therefore it helps, just as in
a regular regression model, to add an error term, so that the LLTM with error model (LLTM + ε)
is obtained:

βi =
Q∑

q=1

βqXiq + εi, (2b)

where εi is an error term with a normal distribution, εi ∼ N(με, σ
2
ε ), so that, in fact, the items are

treated as random. Strictly speaking, each combination of X-values defines an item population.
The third issue is differential item functioning (DIF). DIF means that the probability of

giving a correct response to an item, or in general of giving a particular response, is not solely a
function of the person’s ability, but also of the person belonging to a certain group. The term DIF
refers to the differential functioning of an item depending on the group a person belongs to:

βi1 = βi0 + gpδi, (3a)
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where βi0 and βi1 are the fixed difficulties of item i in the reference group, and in the focal
group, respectively, gp indicates to which group a person p belongs, gp = 0 for the reference
group, and gp = 1 for the focal group, δi is the fixed DIF value, the difference between βi0 and
βi1, δi = 0 means there is no DIF.

To find out about DIF, one can either make use of indices or of an IRT model. There are
two global strategies. The first can be used for both, the second is limited to IRT models. First,
following an anchoring strategy, one can make assumptions about a subset of the items not
showing DIF (anchor items), while investigating the remaining (see an overview of anchoring
methods further on). Second, following a free parameters strategy, one can either formulate an
augmented model without any equality constraints, or one can conduct separate analyses for
the focal and reference groups, in both cases, in order to check for which parameters there are
differences between the focal group and the reference group. An overview of methods is given
among others by Camilli and Shepard (1994), Holland and Wainer (1993), Millsap and Everson
(1993), and Teresi (2001).

Both these global strategies have drawbacks. When relying on the anchoring strategy, one
depends for the DIF analysis on the quality of the anchor set and corresponding assumptions.
When using a free parameters strategy, a lot of parameters are required, and the strategy is more
vulnerable to capitalization on chance.

Two way-outs will be described. First, a bivariate approach with random difficulties in both
groups can be followed, summarizing the whole of DIF with three parameters: two variances and
a covariance. This leads to the random item profiles model or RIP model, to be explained later.
Second, a binary latent item variable may be introduced to differentiate between DIF items and
non-DIF items, leading to an item mixture model. A combination of both, called the random item
mixture model or RIM model, would lead to the following formulation:

βig = (1 − αigp)βi0 + αigpβi1 and (βi0, βi1) ∼ BVN(μβ0 ,μβ1,Σβ0β1),

αi ∼ Bernoulli(πα),
(3b)

where βig is the difficulty of item i in group g, αi is a latent binary variable indicating whether an
item shows DIF (αi = 1) or not (αi = 0), μβ0 and μβ1 are the mean difficulties in the reference
group and the focal group, respectively, Σβ0β1 is the covariance matrix of the difficulties. Note
that the bivariate distribution is conditional on αi = 1.

The model in (3b) makes use of two kinds of random item variables: continuous ones (βi0
and βi1), and a binary one (αi ).

There might be other issues that can be approached with a random item IRT, but we will fo-
cus on these three. They are chosen to be representative for some of the most important subjects
in the field of psychometrics: measurement per se, explanatory measurement, and troubleshoot-
ing measurement. Measurement per se is an important subject, especially because decisions are
being based on measurement results, such as in education. Explanation is another important sub-
ject because explanation is the main objective of science, and the basis of all practice. If what is
established cannot be explained, one can at best come up with a trial and error approach for a
remedy. Explanatory measurement is the combination of measurement and explanation, so that
what is measured can be explained at the same time (De Boeck & Wilson, 2004). Trouble shoot-
ing measurement, or the identification of problems through measurement, and most importantly
problems with the quality of measurement, is another important subject. Most trouble shooting
approaches are heuristic, using indices with known or unknown statistical properties. The use of
indices for DIF is a common practice. Modeling is often not a good alternative for troubleshoot-
ing because most models are not directed to the identification of problems; they rather deal with
the regular case. But when the measurement model is shaped after the problems to be identified,
also a measurement model may help for trouble shooting.
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4. Verbal Aggression Data Set

One data set will be used for all three kinds of subjects, based on De Boeck and Wilson
(2004). It is a 316 persons by 24 items binary data set, obtained after a dichotomization of
ordered-category responses (0 = no, 1 = perhaps, 2—yes, with 1 and 2 recoded as 1). All items
consist of a stem describing a frustrating situation, and a verbal aggression response part describ-
ing how people could respond to the situation in question. The items are written to fit a 2 × 2 × 3
design with two replications within each cell.

For the item stem, a two-valued factor is used: others to blame vs. self to blame. For example,
“a bus fails to stop for a passenger” is a frustrating situation for the passenger, but it is not the
passenger’s fault; instead it is the bus driver’s fault. On the other hand, when “someone is about
to enter a grocery store just when it closes,” the person is most likely to be frustrated, but it is
not the fault of the storekeeper when the closing hour is respected; instead the client should have
known better. In total, four situations were used:

1a. A bus fails to stop for me.
1b. I miss a train because the clerk gave me faulty information.
2a. The grocery store closes just as I am about to enter.
2b. The operator disconnects me when I used up my last 10 cents for a call.

The first two situations are other-to-blame situations, and the latter two are self-to-blame situa-
tions. The two situations of the same type (a and b) are considered as replications.

For the verbal aggression responses, a person may give to the situation in question, two fac-
tors are varied: three kinds of verbal aggressive behaviors (“cursing,” “shouting,” “scolding”),
and two behavior modes (“wanting,” “doing”). The combination of these two factors yield re-
sponse formulations such as “I would curse” (for doing), “I would want to curse.” (for wanting)

The full item contains an item stem (one of the four frustrating situations), and a response
to the situation (one of the three behaviors combined with one of two behavioral modes), so that
given there are two items of each kind, in total 24 items are obtained, while the item design is of
a 2 × 2 × 3 type.

In total, 316 persons have responded to the items: 243 women and 73 men, all of them first-
year psychology students of a Dutch speaking Belgian university. The 24 items were presented
in Dutch, the native language of all the participants.

5. Four Rasch Models

Depending on whether the persons and the items are either treated as random or fixed, four
different kinds of Rasch models can be defined: (1) the fixed persons—fixed items Rasch model
(FPFI Rasch), (2) the random persons—fixed items Rasch model (RPFI Rasch), (3) the fixed
persons—random items Rasch model (FPRI Rasch), and (4) the random person—random item
Rasch model (RPRI Rasch) (see Table 1).

TABLE 1.
Four Rasch models depending on the random or fixed nature of persons and items.

Items
Persons Fixed Random

Fixed FPFI Rasch FPRI Rasch
Random RPFI Rasch RPRI Rasch
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Two of these models are regularly used: the FPFI Rasch model and the RPFI Rasch model.
The former is the joint maximum likelihood (JML) version of the Rasch model, and the latter is
the marginal maximum likelihood (MML) version of the Rasch model. It is well known from the
literature that the JML estimation method leads into consistency problems, and that a correction
of the person parameters is needed to obtain better estimates (Andersen, 1980). This is why the
MML approach is preferred.

Usually these two approaches are described as estimation methods, but they rely on different
model formulations. The reason why they are considered estimation methods in the first place is
because when the focus is on the estimation of item parameters, then assumptions regarding the
persons may be considered instrumental to arrive at item parameter estimation. The third clas-
sical estimation method is conditional maximum likelihood (CML), which is a method without
making any assumptions regarding the persons, based on the given that for the Rasch model, the
sum score is a sufficient statistic for the person parameters. Again, the same priority is given to
the estimation of the item parameters. Apart from the items being considered in a more natural
way as fixed entities, the fact that the data contain more information about the item parameters
than about the person parameters is perhaps the main reason why one has concentrated on items
for the estimation.

Two of these models are not regularly used: the FPRI Rasch model and the RPRI Rasch
model. The first of these is the earlier mentioned person measurement model. Its estimation can
follow the well-known MML method, but with changing roles between persons and items. The
second is a crossed random effects Rasch model, with both, random person effects and random
item effects. It requires a different approach to estimation as will be explained.

Instead of reducing the issue of choosing between the four to an issue of estimation, the
choice should depend in the first place on one’s purpose. Generalization and explanation are two
important purposes that would lead to the use of random parameters. A random persons approach
is to be recommended if one wants to generalize the item measurements over persons to the
population of persons under consideration, such as when building an item bank for computer
adaptive testing. A random persons approach is to be recommended also if one wants to explain
the person variation though external person covariates because the random approach allows for an
error term. In a similar way, if one wants to generalize person measurements over items, or if one
wants to explain item difficulties, a random item approach is to be recommended. Measurement
of individual elements is an important purpose that would lead to the use of fixed parameters.
If interested in the individual items or individual persons, the items and persons, respectively,
should be treated as such, and included in the model with fixed effects.

The choice of a model, one out of the four, has consequences for the goodness of fit of
the model, for a possible shrinkage of the parameter values, and for the standard error values.
Furthermore, the estimate of the intraclass correlation depends on the model. All this will be
illustrated for the verbal aggression data set, although none of the models may seem perfectly
appropriate, for one or more of the following reasons. The models do not take into account that
men and women may be two different populations, and in a similar way, the item design is not
taken into account. There might be also other reasons, such as the difficulties differing between
men and women.

5.1. Model Estimation

Three of the four Rasch models are estimated with the lmer function of lme4 in R (Bates,
Maechler, & Dai, 2008), and all four are estimated with WinBUGS, a Markov Chain Monte Carlo
(MCMC) approach (Lunn, Thomas, Best, & Spiegelhalter, 2000). The one model that could not
be estimated with lmer is the FPFI model, because lmer requires at least one random effect,
and for that model the glm function from R was used. For the estimation of the standard errors,
lmer makes use of the posterior distribution of the parameters in question (command mcmcamp)
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which can be derived as follows. Because the likelihood is known, assuming a certain prior, the
posterior can be derived. For the fixed effects parameters, a locally uniform prior is chosen. For
the variance-covariance matrices of the random effects, also a locally noninformative prior is
used, an inverse Wishart distribution in the neighborhood of the estimates.

The second program, WinBUGS version 1.4.3 was ran with five chains with a length of
5,000 each. The priors for the random effects were N(0, σ 2), with σ 2 distributed as an inverse
gamma (1,1), and the priors for the fixed effects were N(0,1/0.05), but the results were identical
when 0.1 was used as the precision value (and hence, 1/0.01 as the variance). These options for
WinBUGS will be used for all applications, also in the following sections. In order to check
convergence, the R̂ index proposed by Gelman and Rubin (1992) is used. The values are not
reported because they never exceeded the critical value of 1.1.

For the estimation of the RPRI Rasch model, two more methods were used: the xtmelogit
command from Stata (StataCorp, 2007), and a newly developed alternating imputation posterior
(AIP) algorithm with adaptive Gauss–Hermite quadrature (Cho & Rabe-Hesketh, 2008). The
RPRI model is a model with crossed random effects and, therefore, it requires integration for each
item and for each person. Two of the four estimation methods are based on an approximation of
the integrand and two are based on an approximation of the integral. See Tuerlinckx, Rijmen,
Verbeke, and De Boeck (2006) for a discussion of the various approximation methods. Both,
xtmelogit and lmer make use of the Laplace method (Thierny & Kadane, 1986), which is a
quadratic approximation of the log of the integrand at its mode. The Laplace method is expected
to work well if the cluster size (number of items in the RPFI model, and number of persons
in the FPRI model) is rather large. It is known, however, that all estimates are somewhat less
extreme when an approximation to the integrand is used. The other two approaches, WinBUGS
and AIP, are based on an approximation of the integral, one is a sampling method (MCMC with
WinBUGS), and the other is an adaptive Gauss–Hermite quadrature approach (AIP).

The main idea of the AIP algorithm is to divide the total model into submodels (called
wings) for persons and for items, and to alternate between the two WINGS until convergence.
The algorithm iterates between an item wing in which the item mean and variance are estimated
for given person effects and a person wing in which the person mean and variance are estimated
for given item effects. The estimation is based on maximum likelihood and adaptive quadrature.
The person effects used for the item wing are sampled from the posterior distribution estimated
in the person wing and vice versa.

5.2. Results

5.2.1. Goodness of Fit We will not investigate the absolute goodness of fit because the
models are used for illustrative purposes, but instead the relative indices AIC and BIC (although
strictly speaking, these indices don’t apply for methods which are based on an approximation of
the integrand, such as lmer). Table 2 shows the deviance and the AIC and BIC results for all four
models (the function glm from R for the first, and the function lmer for the other).

It is by definition the case that the FPFI has the lowest deviance because it is the most flexible
model, with a parameter for each of the items and for each of the persons. Because the number

TABLE 2.
Goodness-of-fit indices of the four models estimated with lmer.

Rasch models # df Deviance AIC BIC

FPFI 48 7070 7166 7499
FPRI 26 7196 7248 7428
RPFI 25 8078 8128 8302
RPRI 3 8203 8209 8230
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of persons is larger than the number of items, it is also a quite normal result that the FPRI model
has the second lowest deviance, followed by the RPFI model, and the RPRI model, which has
the highest deviance.

Like in all Rasch models, one degree of freedom is spent on an identification constraint. The
FPFI model needs in theory P + I − 1 parameters, but following the Rasch model, only I + 1
different values for the fixed person parameters can be obtained (because there are only I + 1
sum scores), so that in practice only (I + 1) + I − 1 = 2I parameters are used. The FPRI model
needs in theory P + 1 parameters and in practice only (I + 1)+ 1 = I + 2 parameters. The RPFI
models needs 1 + I parameters. Finally, the RPRI model needs only three parameters: one mean
and two variances, the mean of the persons, or of the items being set equal to zero for reasons of
identification.

Because of its large flexibility and the still relative low numbers of parameters, the FPFI
model has the lowest AIC value. The FPRI model is the second best in terms of AIC. Given that
the numbers of parameters are still much larger for the FPFI model than for the FPRI model, and
that the deviance is not much larger, it is not surprising that the FPRI model has the best relative
goodness of fit in terms of the BIC. The RPFI model has the highest BIC because its deviance is
not much lower than that of the RPRI model, while the latter uses much more parameters. Note
that the FPRI model was considered here to be the ideal model for measurement, while the RPFI
model is the most popular one. However, in terms of goodness of fit (deviance, AIC, and BIC),
the FPRI model does clearly better than the RPFI model.

Two factors play in the goodness of fit of the four models. First of all, one may expect the
goodness of fit of a model with fixed persons/items to be better the more the distribution of the
persons/items deviates from the normal distribution. This factor depends on the data. Second,
for the information indices, AIC and BIC, the number of parameters plays an extra role. In
this regard, models with fixed effects have a handicap (a larger penalty) in comparison with the
models with random effects. This factor depends on the size of the data set, independent of the
data. That the fixed vs. random effects of the persons have a larger effect than the fixed versus
random effects of the items, may perhaps not be generalized to other applications.

5.2.2. Shrinkage Effects Goodness of fit has an effect on the scaling of the effects because
in IRT the effects are expressed relative to the unexplained variance, or more precisely, rela-
tive to the standard deviation of the error term (Snijders & Bosker, 1999). In a logistic model,
the unexplained variance is the logistic error variance. The effects are expressed relative to the
standard logistic variance, which is 3.290. However, when the logistic distribution is approached
with a normal distribution, the corresponding variance 2.892 (the square root of which is the
well-known scaling factor D or 1.70), but see Savalei (2006) for a Kullback–Leibler alternative,
with D = 1.75. If a model is incomplete because some effects are not included in the model,
these nonincluded effects increase the error variance, which is standardized, so that in fact the
scaling of the included effects shrinks, unless a dispersion parameter is included.

In order to check for this effect, the ability estimates and difficulty estimates of all four
models are pairwise regressed one onto the other, both for lmer and WinBUGS. It was found that
the difference in goodness of fit (deviance), was highly predictive of the slope. When effects from
a better fitting model were regressed on those of a poorer fitting model, the slope was smaller than
one (except in some of the cases, when the difference was small). For example, regressing the
glm abilities from the FPFI model on the lmer abilities of the other three models, the slopes were
1.010 (FPRI), 0.823 (RPFI), and 0.809 (RPRI), nicely in line with the differences in the deviance
(126, 1008, 1133). This result was obtained also for WinBUGS and for the item difficulties, but
the effects are larger for WinBUGS and for abilities in comparison with difficulties.

The shrinkage affects also the variance estimates. The estimates are larger if the deviance is
smaller. For example, the lmer estimates of the difficulty variance are 1.419 for the FPRI model
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and 1.280 for the RPRI model. The effect is smaller for the ability variance: 1.902 for the RPFI
model and 1.887 for the RPRI model when lmer is used. This is again in line with the difference
in deviance. The difference between the FPRI and RPRI models is 1,007, while the difference
between the RPFI and RPRI models is only 125. The same kinds of effect show with respect to
the standard errors of the estimates, and again the shrinkage is a function of the goodness of fit.

The choice of a model is not without consequences for the size of the effects, due to the fact
that all effects are scaled relative to a standardized error. One should therefore not be surprised
to see rather large differences in estimates when going from one model to the other. These dif-
ferences must be attributed to differences in goodness of fit, rather than to the estimation method
as one may be inclined to when an estimation perspective predominates, as for JML and MML.

5.2.3. Variance Components An interesting consequence of treating elements as random is
that the variance components and an intraclass correlation can be determined. The only variance
component for the FPFI model is the error variance (the standard logistic variance), so that the
intraclass correlation cannot be derived. For the FPRI model, the item variance component is
estimated, and for the RPFI model, the person variance component is estimated. Finally, for
the RPRI, three estimated variance components are available: the error variance component,
the person variance component, and the item variance component. Various kinds of intraclass
correlations can be calculated: for the persons or for the items, the other mode being fixed or
random, and for two elements, ICC(1) (the reliability of one item), or for the sum of all elements,
ICC(k) (the reliability of the sum) (McGraw & Wong, 1996; Shrout & Fleiss, 1979).

We concentrate here on the ICC(k) or the reliability of the sum. The intraclass correlations
reported in the test literature always concern the persons, and refer to the reliability of the mea-
surement of persons. This makes sense, of course, because one is interested in the measurement
of persons in the first place. The items are “only a tool.” In general, the intraclass coefficient for
items is less relevant, but perhaps not irrelevant in the context of building an item bank.

The most complete model with respect to variance components is the RPRI model. The
variance estimates are given in Table 3 for lmer, xtmelogit, WinBUGS, and AIP. They are re-
markably similar throughout all four programs, and only for the person variance slightly smaller
when an approximate method is used. The lmer results will be used for the ICC, but, the ICCs are
nearly identical for all four methods. The three variance components are as follows: 1.887 (per-
sons), 1.280 (items), and 2.892 (error). For the error component, the normal approximate is used,
because the other two distributions (persons, items) are normal. This means that 31.1% of the
variance is due to persons, and 21.1% is due to items, whereas almost half is error variance. The
total variance (100%) refers to a theoretical underlying continuous variable Vpi which is the sum
of both random effects and an error term. In order to obtain binary responses following the Rasch
model, this Vpi must go through a dichotomization process with as a cut-off Vpi = 0 (Ypi = 1
iff Vpi ≥ 0). The corresponding ICC(k) for Vpi is 0.916. When the items are treated as fixed,
following the RPFI model, the corresponding ICC(k) is 0.940. These results are also confirmed
when the corresponding normal-ogive models are used. However, when the coefficient alpha is
calculated based on the binary data, the result is 0.876. The difference with the ICC(k) values

TABLE 3.
Variance estimates of the RPRI Rasch model using four methods.

Method Person variance Item variance

lmer 1.887 (0.19) 1.280 (0.47)
xtmelogit 1.886 (0.19) 1.276 (0.38)
WinBUGS 1.911 (0.19) 1.289 (0.40)
AIP 1.901 (0.19) 1.277 (0.38)
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just reported is that the latter refer to the underlying continuous variable Vpi , whereas the 0.876
refers to its dichotomization, which is less informative. Another explanation for the difference is
that coefficient alpha is lower when there is an interaction between persons and items. However,
if that is the case, the Rasch model is contradicted.

The corresponding ICC(k) for the items is 0.914, and if the persons are fixed, the value is
0.922. These values may be considered high, but they rely on the assumption that the distribution
of difficulties is normal, which is not a desirable feature for all kinds of item banks. If one
wants to cover the ability in an equally good way through its whole range, then a rather uniform
distribution is desirable in the range between plus and minus three standard deviations.

Models with random effects have the asset that they allow for the estimate of variance com-
ponents and ICCs, also for the items if the items are treated as random. The latter may be espe-
cially relevant for applications in which one relies on an item bank. One should keep in mind,
though, that by definition the ICC is larger when the other mode is treated as fixed, although the
difference may be small, as shown in the present application.

5.3. Discussion and Conclusion

It was argued earlier that for the measurement of persons per se, the person measurement
model or FPRI model is the better one, because it concentrates on individual persons and has the
potential to generalize over sets of items. The model did quite well also in the application with a
clearly better goodness of fit than the common RPFI model, and in terms of the BIC, it was the
best of all four models. Strictly speaking, this result may not be generalized because it depends
on how far the person distribution differs from the normal distribution, and on the number of
persons and items, but given that there are always far more persons than items, it may be expected
in most cases indeed. Interestingly, the FPRI model offers also the possibility of assessing the
reliability of the item difficulties in a rather easy way, using the intraclass correlation. All these
assets contribute to the value of the FPRI model.

However, the purpose is not always measurement per se of persons. Just as for items, there
are often good reasons to treat the persons as random, and items as fixed. As has been shown,
choosing for one of the four models has implications, for the goodness of fit, for the scaling of
the effects and their standard error, and for the value of the ICC.

The doubly random model, RPRI, is considered a challenge for estimation. In the present
application, four clearly different estimation methods yield very similar results. In theory, the
AIP and the MCMC methods should be the better ones, but in this application their advantage is
certainly not outspoken. Apart from the methods used here, also GLIMMIX and MLwiN can be
used for the estimation of doubly random models (Van den Noortgate et al., 2003).

6. The Linear Logistic Test Model with Error

The reason for being interested in a LLTM with an error component is twofold. First, it
is rarely the case that the item parameters can be perfectly explained from the item properties,
because both the substantive theory behind the model is not perfect, and because the difficulty
may actually be a random variable. This is especially the case if more than just one item is used
for each cell in the design, as is the case for the data set under consideration with 24 items for
12 cells in the design. An error term as in (2b) can then account for the discrepancy between the
freely estimated difficulty and the LLTM-estimated difficulty.

Second, it is possible that the error term is larger in one part of the design than in another.
For example, going from “wanting” to “doing,” a lot of additional factors may start to play a
role, beyond and independent of the item properties that are hypothesized to play (the design
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factors). The hypothesis of additional factors not covered in the design can be tested by allowing
for a heteroscedastic model, with a different error term depending on whether doing or wanting
is concerned. The data set is perhaps not very appropriate because of its limited size, with only
12 doing items and 12 wanting items, but the application is meant for illustrative reasons only.

An error component as in (2b) makes the item difficulty prediction into a regular regression
model, with an error term, just as in a latent regression approach used for the person parameters,
using design factors for the persons (Adams, Wilson, & Wu, 1997; Verhelst & Eggen, 1989;
Zwinderman, 1991).

6.1. Model Estimation

The coding scheme for the item properties is the same as used by Janssen, Schepers, and
Peres (2004). Dummy coding is used for “doing” (= 1) versus “wanting” (= 0), and “other-
to-blame” (= 1) versus “self-to-blame” (= 0). For the three behaviors, contrast coding is used
with two factors: (1) a blaming factor, with “curse” and “scold” (= 1/2) as blaming behaviors,
contrasted with “shout” (= −1), which is in Dutch (“het uitschreeuwen”) not really a way of
blaming someone else; (2) an expression factor, with “curse” and “shout” (= 1/2) as expressive
behaviors, contrasted with “scold” (= −1).

The data have been analyzed before with both the models formulated in (2a) and (2b) by
Janssen et al. (2004). For the LLTM with error (homoscedastic), a MCMC approach implemented
in the software of the authors was used, whereas both, the same MCMC approach and NLMIXED
(SAS Institute, 1999), were used for the regular LLTM. In the present application, three models
(LLTM, homoscedastic LLTM + ε, heteroscedastic LLTM + ε) are estimated with lmer and
WinBUGS, using the same options as in the earlier applications.

6.2. Results

6.2.1. Goodness of Fit The deviances of the three models as estimated with lmer are as fol-
lows: 8238 (df = 6), 8150 (df = 7), and 8147 (df = 8) for the LLTM, homoscedastic LLTM + ε,
and heteroscedastic LLTM + ε, respectively. The corresponding AIC and BIC values are: 8250
and 8292 (LLTM), 8164 and 8213 (homoscedastic LLTM+ε), and 8163 and 8218 (heteroscedas-
tic LLTM + ε). The LLTM models with error do clearly better than the regular LLTM, but it is
hard to differentiate between the two models with error. As expected, the error term seems larger
for the do items than for the want items, the respective estimates being 0.21 (0.17) for doing and
0.04 (0.09) for wanting, but the large standard errors (within parentheses) do not allow for an
interpretation of the difference. The standard error is given within parentheses also in the follow-
ing. The number of items is too low for a conclusion to be drawn about homoscedasticity versus
heteroscedasticity. In the following, only the homoscedastic variant will be reported. The item
variance estimate for the homoscedastic model is 0.16 (0.06), and the standard error of 0.06 is
smaller than for the heteroscedastic model.

6.2.2. Comparison of Estimates The estimates from lmer and WinBUGS for the regular
LLTM and the LLTM with homoscedastic error are shown in Table 4. First of all, these results
perfectly agree with those obtained by Janssen et al. (2004). The interpretation must be that
people are less aggressive in what they would do than in what they would want to do, which is a
clear and expected inhibition effect (doing makes the items more “difficult”). Verbal aggression
is more likely when someone else is to blame (someone else to be blamed makes the items
“easier”), and both, blaming and expressing one’s frustration are more likely than not blaming
the other person and not expressing one’s frustration (blaming items and expressing items are
“easier”).
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TABLE 4.
Estimates of the item property effects for the regular LLTM and the LLTM + ε.

LLTM LLTM + ε

lmer lmer
WinBUGS WinBUGS

Do 0.68 (0.06) 0.71 0.15)

0.67 (0.06) 0.69 (0.17)

Other-to-blame −1.03 (0.06) −1.05 (0.15)

−1.03 (0.06) −1.03 (0.19)

Blaming −1.35 (0.05) −1.40 (0.12)

−1.36 (0.05) −1.41 (0.16)

Expressing −0.70 (0.05) −0.70 (0.12)

−0.70 (0.05) −0.71 (0.16)

Intercept 0.32 (0.05) 0.33 (0.15)

0.31 (0.05) 0.33 (0.17)

Second, the results are highly similar for all estimation methods used: the MCMC method
as programmed by Janssen et al. (2004), NLMIXED for the regular LLTM, lmer, and WinBUGS.
This adds to the robustness of the results.

Third, in general, the estimates of the effects are slightly larger for the LLTM with error
(LLTM + ε) than for the regular LLTM. The difference can again be explained by a scaling
effect because the LLTM + ε has a smaller deviance. The effect is not large, the correlation
between the Rasch difficulties and the LLTM reconstructed difficulties is 0.94, and hence the
improvement using the LLTM + ε is only minor, although worth of considering. Another way of
looking at the predictive value of the item properties is to compare the error variance estimate of
0.16 obtained from the LLTM + ε, with the item variance estimate from the RPRI model, which
is 1.28 using lmer. Hence, the item properties reduce the item variance with 87.5%, or in other
words, 87.5% of the original variance is explained. This corresponds exactly with a correlation
coefficient of 0.94, as derived earlier in another way.

Fourth, the standard errors of the estimates are clearly larger for the LLTM + ε in compar-
ison with the regular LLTM, and both methods, lmer and WinBUGS agree on this finding. The
explanation cannot be a scaling effect because the scaling effect is only minor, and neither can it
be the extra uncertainty when using a Bayesian method (which leads to somewhat larger standard
errors). The larger standard errors must thus stem from using an error term in the LLTM.

6.3. Discussion and Conclusion

The LLTM + ε corresponds better with a (latent) regression approach, and has therefore
a conceptual advantage. Apart from its conceptual advantage, two other assets should be men-
tioned, based on the application: (1) The LLTM with error yields a better goodness of fit, al-
though the gain is rather minor in this application, but it is not negligible either. The usefulness
of a heteroscedastic error term could not be illustrated with this data set, probably because the
item set is too small. (2) The various estimation methods yield about the same results, which
suggest that it is quite feasible indeed to estimate a LLTM with error. This is not surprising since
a similar approach for persons, called a latent regression approach (e.g., Zwinderman, 1991),
seems to work well. In the present application, the item covariates have a very strong predictive
value, and it would be of interest to investigate the model and its estimation also for the case
with weaker item covariates because especially in those cases the error term would be badly
needed.
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The LLTM + ε has a price to be paid, in the form of much larger standard errors. But when
the regular LLTM is not the true model because there is some random variation left, the effects
as estimated in the regular LLTM may look more robust than they actually are. Effects that seem
significant using a regular LLTM could as well be not significant when an error term is used.
It is an important issue which statistical conclusion should be trusted. Given the strength of
the covariate effects in the present application, it is not an issue here, but it might be in other
applications. The LLTM is almost always a misspecified model. Eliminating the error term as in
the regular LLTM means one actually eliminates the uncertainty associated with the unexplained
item variance.

7. Differential Item Functioning

The issue of differential item functioning (DIF) can be formulated as follows. Which of the
items, if any, has an IRF that differs between (1) a group of interest, such as a minority group
or any other group one would be interested in, and is therefore called the focal group, (2) and a
reference group, taking into account that the mean ability may differ depending on the group?
Given the concentration on Rasch models, we will limit the study to difficulty as the sole aspect in
which IRFs can differ. This is of course a limitation, and it restricts the present study to uniform
DIF, but it is an initial step to explore several new approaches, to be investigated further for other
aspects of the IRF in the future.

7.1. A Bivariate Difficulty Distribution Approach

DIF is studied either in a nonparametric way, without any modeling, or it is studied in a
parametric way, based on modeling. However, in both cases, DIF is seen as a discrete event. An
item is flagged as DIF or it is not. A discrete view is perhaps not a realistic view on DIF, for the
following reasons:

1. DIF values differ depending on the items. In many cases, the DIF index does not show an
elbow when the values are ordered from high to low. The decrease from the DIF items to the
non-DIF items is often not abrupt. Smaller values of these indices do not mean there is no
difference. It seems very unlikely that the degree of DIF drops to zero or almost zero when
going from DIF items to non-DIF items. It seems plausible that in many cases DIF decreases
gradually. This graduality may be better in line with a random effects approach than with a
fixed effect approach and a clear cut between DIF and non-DIF.

2. The items may differ in the degree to which they are characterized by a feature that makes the
difference between the two groups. For example, math problems often require some verbal
comprehension, and the verbal comprehension ability may differ between the focal group and
the reference group. It is hardly possible to keep the degree of required verbal comprehension
perfectly constant over the items, and it is also rather unlikely that math problems fall nicely
into two categories for their loading with verbal comprehension (one with, one without such
a loading). A gradual approach with random differences between the items may be more
appropriate to capture such a reality.

3. Small DIF values do not make a chance with the classical DIF approach because the method
in question often does not have the power to detect these small values, so that only the larger
ones are identified. Statistical significance or rules of thumb are used as a decision criterion,
so that DIF may look like a discrete phenomenon restricted to a few items, whereas in fact its
nature may be gradual and global instead. Using a discrete decision criterion does not make
reality discrete.
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A more gradual view on DIF and its possible random nature leads into a model with ran-
dom item profiles in the focal and the reference group (RIP model). This bivariate approach is
nothing more than a RPRI Rasch model for both groups. But because we now have two random
difficulties, one for each group, a bivariate distribution of item difficulties is involved (see (3b)):

(βi0, βi1) ∼ BVN(μβ0 ,μβ1,Σβ0β1). (4)

In this way, DIF is no longer associated with a particular subset of items, but is a general and
gradual item phenomenon instead. DIF can be tested comparing the univariate and the bivariate
models. The degree of overall DIF can be expressed in the correlation and the difference between
two variances. Important advantages of the approach just described are that it allows for overall
DIF without a serious increase in the number of parameters, and that it can easily be extended
into a multivariate approach if there is more than one focal group, so that a multivariate instead
of a bivariate RIP model is obtained.

7.2. Simulation Study

Using a RIP approach does not prevent us from still trying to identify DIF items in case DIF
is in fact a discrete event. This will be shown in a simulation study where the RIP approach is
used together with some more traditional approaches. The RIP approach for flagging DIF items
consists of fitting the bivariate RIP model and to derive ML estimates for the difficulties in both
groups, followed by a robust regression and the identification of outliers, in order to identify DIF
items.

The reason for thinking of robust methods is twofold. First, these methods can solve the
linking issue. The estimation of the group difference is not affected by outliers when using a
robust method. DIF items are outliers in the scatter plot of difficulties in the focal group versus
difficulties in the reference group, on the condition that the DIF items are a minority. This leads
to a certain linking that differs from the more common ANOVA linking, with mean difficulties of
zero in both groups. Second, the ANOVA linking yields DIF inflation when DIF is asymmetrical,
whereas the robust approach does not. DIF is asymmetric if it is restricted to a subset of the items
showing a mean difference in difficulty between the two groups. Take as an example five items
with the following difficulties −2, −1, 0, +1, and +2 in the reference group, and −1, 0, 0,
+1, and +2 in the focal group, and with no difference in ability between the two groups. As
can be seen, the first two items are DIF items, and their mean differs between the two groups.
However, when an ANOVA based linking is used, with mean difficulties of zero, the focal group
will be seen as less able, with a mean that is 0.40 lower than that of the reference group, and the
difficulties in the focal group would seem to be −1.40, −0.40, −0.40, 0.60, 1.60, and, therefore,
all items would look like DIF items. This is an artificial DIF inflation due to the kind of linking
(Wang, 2004). As can be seen in the example, the size of the true DIF is reduced, and DIF is
created where there is not any. This may lead to both, more false negatives (DIF item not flagged
as such) and more false positives (non-DIF items flagged as DIF).

The robust regression method is much less vulnerable to this inflation. It gives no, or only
a very small weight to the first and second items, so that the ability difference between the two
groups is not much influenced by the DIF items. In the simulation study, five different methods
to detect DIF will be used.

The robust procedure consists of two steps after the estimation of the bivariate RIP model
and the corresponding difficulties (all with lmer in the simulation study): In step one, the focal
group difficulties are regressed on the reference group difficulties. The regression is based on a
minimization of Tukey’s biweight function ρ and is therefore not a regular kind of least squares
minimization. In fact, an iterative reweighted least square method is used for the minimization,
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such that the degree of extremeness of an observation has no effect. The function ρ-based es-
timator is an M-estimator (Rousseeuw & Leroy, 1987) and is implemented in the function rlm
from the MASS library in R. The reason for using the robust regression is to prevent that the
regression line is affected by asymmetric DIF (e.g., all DIF items being more difficult or easier
in the focal group). DIF items are in fact outliers, and if the DIF is asymmetric, the intercept
in a regular regression would be affected independent of the true impact (difference in ability
level between the two groups). Two kinds of regression were used, one with a slope of one, and
another with the slope as a parameter. On average, the slope-one regression did slightly better for
DIF identification, so that only the results of that method will be reported.

In step two, a robust confidence interval is determined for the distance to the regression
line. The method used is the MCD approach (robust estimation of the covariance matrix by the
“minimum covariance determinant”) (Rousseeuw & van Driessen, 1999). The reason for using
robust confidence intervals is to prevent that the confidence intervals are stretched by the DIF
items (outliers in the scatter plot). Items with a distance from the regression line that exceed the
95% confidence interval are flagged as DIF items. If the regression slope is one, step one of the
procedure (the regression step) may be skipped. The method based on estimating the RIP model
followed by a robust analysis is called here the RIP + rob method.

A simpler variant of this approach would be to go through the two robust steps, but with the
logit of the proportions of success in both groups, and hence without any modeling. This method
is very similar to the delta plot method (Angoff & Ford, 1973) and its regression-based adapted
version (Chen & Henning, 1985), apart from two aspects. First, the probit transformation is used
for the delta plot method instead of the logit transformation, and second, the delta plot method
does not make use of robust methods. The delta method is found to be a suboptimal method in
the literature (Ironson, Homan, Willis, & Singer, 1984; Shepard, Camilli, & Williams, 1985),
but a robust variant has never been investigated. The robust approach applied to the logit of the
proportions of success is called here the logit(p) + rob method. In contrast with the RIP + rob
method, it is a nonparametric method.

Three other methods will be used in the simulation study: two nonparametric methods based
on the sum of scores, and one parametric method. They share all three that each item is in-
vestigated separately assuming the other items are non-DIF items (all-other anchoring). This
assumption is a rather common one, but the risks of this assumption are somewhat compensated
by an iterative procedure, omitting items from the sum score one by one. First, the item with
the strongest indication of DIF is omitted, and the method is reapplied, and so on (Millsap &
Everson, 1993). Here, the methods will be used in a non-iterative way.

The first traditional method is the Mantel–Haenszel method, abbreviated as MH (Mantel &
Haenszel, 1959). The MH χ2 statistic to determine whether the non-DIF null hypothesis should
be rejected is based on a contingency table of item × group × sum score. Like for the previous
two methods, an α-level of 0.05 will be used.

The second traditional method is the standardization method, based on the STD P-DIF sta-
tistic. The statistic is the weighted sum over the score groups of the differences in proportion of
success between the focal and the reference groups, weighted with the proportions represented
by the sum score groups of the focal group (Dorans & Kulick, 1986). Dorans and Holland (1993)
found that the results of the standardization method are in close agreement with the MH results.
Much depends on the critical value that is used. Therefore, different thresholds for DIF identifi-
cation are tried out. Among the critical values of 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, the threshold
of 0.08 gave the best results on average and most similar to the MH method. Therefore, the 0.08
will be used to report the results.

The third traditional method is the likelihood ratio method (Thissen, Steinberg, & Gerrard,
1986), abbreviated here as LR. The method will be applied here item by item. The LR test is
applied using two models: one with equal item difficulties and another with group dependent
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TABLE 5.
Error rate in DIF identification for five methods, depending on the distribution of the items, the overall difference in
ability, and symmetrical versus asymmetrical DIF.

DIF identification Difficulties Difficulties
method N(0, 1) U[(−2, 2])

Symmetrical DIF MH 3.00% 3.50%
equal mean abilities STD P-DIFa 3.75% 4.00%

LR 3.75% 5.25%
Logit(p)+rob 4.00% 4.75%

RIP+rob 3.25% 4.75%

Asymmetrical DIF MH 13.00% 12.25%
equal mean abilities STD P-DIFa 12.75% 13.00%

LR 15.00% 16.00%
Logit(p)+rob 3.75% 3.25%

RIP+rob 5.00% 2.75%

Symmetrical DIF MH 4.00% 5.75%
unequal mean abilities STD P-DIFa 7.50% 9.50%

LR 4.25% 5.50%
Logit(p)+rob 3.75% 6.25%

RIP+rob 3.00% 5.75%

Asymmetrical DIF MH 13.75% 15.25%
unequal mean abilities STD P-DIFa 16.00% 15.75%

LR 16.25% 17.50%
Logit(p)+rob 5.50% 6.75%

RIP+rob 4.75% 6.25%

aThe critical values are 0.08 and −0.08.

difficulty parameters for item i. The decision criterion is a LR test outcome that is statistically
significant based on an α-level of 0.05.

Data were simulated for 20 items and 500 persons, following the Rasch model. Three factors
were varied:

(1) the distribution of the item difficulties in the reference group (βi0): either normal, N(0,1);
or uniform, U([−2,+2)];

(2) four DIF items, either with symmetrical DIF values (−0.8,0.8,−1.2,1.2), or with asym-
metrical DIF values (0.8,0.8,1.2,1.2);

(3) mean abilities of either zero in both groups (μθ0 = μθ1 = 0), or zero in the reference group,
and one in the focal group (μθ0 = 0,μθ1 = 1).

For each of the 8 combinations, 20 data sets were generated.
The results are reported in Table 5. Three conclusions may be drawn from these results. First,

the three traditional methods, but not the two robust methods, are vulnerable to distortion when
DIF is asymmetrical. Both, the percentage of false positives (DIF inflation) and the percentage
false negatives increase drastically when DIF is asymmetrical, except for the two robust methods.
The increase of both types of errors is expected, as explained earlier. Second, unequal mean
abilities affect only slightly the error rate. All methods have a slightly higher error rate when the
mean abilities are different. The only exceptions are found for the robust methods when a normal
distribution is used. Third, the two robust methods perform about equally well, but except for
two out of the eight cases, the RIP followed by the robust regression (RIP + rob) does slightly



550 PSYCHOMETRIKA

better than the equivalent method with logits of proportion of success (Logit(p) + rob). The
differences are so small that it does not really pay off to do the modeling. It seems sufficient
to use marginal proportions, and hence a nonparametric approach. This result implies that it is
worth investigating whether not the delta plot method performs quite well if used with robust
regression. Overall, the robust methods do clearly better than the three traditional methods.

7.3. Application to the Verbal Aggression Data

Both, lmer and WinBUGS are used to estimate the RIP model with the following identifi-
cation restrictions: the mean ability in the two groups is zero, and the variance is equal. When
unequal variances are allowed, the goodness of fit is not really better. No restrictions are imposed
on the distributional parameters of the difficulties so that the group level difference will appear in
the differences between the difficulty means. The results of both estimation methods agree very
much. The deviance, AIC, and BIC of the lmer result for the RIP model are 8179, 8191, 8232,
respectively. The model does slightly better than the RPRI model (see Table 2), except for the
BIC. This means that there is no strong evidence for two different difficulty profiles, and that the
degree of DIF as identified through the RIP model is rather minor.

This result is confirmed by the correlation of 0.92 (0.05) between the two profiles. The
variance estimate of the abilities is 1.90 (0.19), and the variance of the difficulties are 1.31 (0.56)
for women and also 1.31 (0.60) for men. The scatter plot is given in Fig. 1.

When the five methods are applied to the verbal aggression data set, the items identified as
DIF depend on the method that is used, as shown in Table 6. The robust methods seem to flag
fewer items as DIF than the traditional methods. This result can be explained as follows. First, the
DIF seems somewhat asymmetrical, which may lead to DIF inflation when not a robust method
is used. Second, perhaps DIF is actually gradual, and the bivariate RIP model may in fact be
the appropriate one, so that there not really outliers and, therefore, the robust methods may flag
fewer items as DIF.

One can see in the scatter plot of Fig. 1 that the items identified earlier as possible DIF items
are the ones that deviate most from the 45° line: 6 and 12 are found above the line, and 14,
16, 17, 19, and 20 are found under the line. The different methods clearly converge in practice,

FIGURE 1.
Scatter plot of item difficulty estimates as obtained from the lmer estimation of the RIP model for the verbal aggression
data.
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TABLE 6.
Identification of DIF items in the verbal aggression data following the five methods.

Item # and description in terms DIF signa MH 2 Rob STD-P-DIF LR
of design factors methods

6: other to blame (train), want, shout Positive DIF DIFb DIF DIF
12: self to blame (call), want, shout Positive DIF – DIF DIF
14: other to blame (bus), do, curse Negative – – – DIF
16: other to blame (train), do, curse Negative DIF DIF DIF DIF
17: other to blame (train), do, scold Negative DIF – DIF DIF
19: self to blame (grocery), do, curse Negative DIF – DIF DIF
20: self to blame (grocery), do, scold Negative DIF – DIF DIF

aPositive DIF value means that the item is “easier” for women, and negative DIF means that the item is
“easier” for men.
bDIF means the item is flagged as a DIF item, and – means it is not.

although they are conceptually quite different. Looking at Table 6, it is interesting to see that
given an equal degree of propensity to verbal aggression, men are more inclined to actually curse
and scold (items 14, 16, 17, 19, 20), and hence to show blaming behavior, whereas women seem
to have a stronger desire to shout when frustrated (items 6, 12), and hence to give expression to
their frustration, rather than showing blaming behavior.

7.4. Anchoring Methods and the Random Item Mixture (RIM) Model

Most DIF detection methods imply a kind of anchoring in an implicit or explicit way. The
reason for describing the anchoring methods here next is that the random item mixture (RIM)
model can be seen as a posterior way of anchoring, while the existing anchoring methods are all
based on an a priori anchor set.

In terms of the Rasch model, DIF is a difference in difficulty, but in order to determine a
difference in difficulty, the scales of both groups needs to be aligned through linking. IRT scales
have no fixed origin, so that their location is a matter of choice for the scales of both groups.
A not so nice consequence is that whether or not an item shows DIF, depends on the scale
linking, or in other words, on the anchoring method. Therefore, DIF is a relative concept, relative
to the kind of linking that is chosen. In order to explain the linking issue and to prepare for the
proposed solution, five anchoring methods will be described in the following, partly based on
Wang (2004):

Equal mean ability anchoring means that the mean ability in both groups is set to a given
common value, for example, 0.00:

μθ0 = μθ1 = 0. (5)

Let us denote the original difficulties as β∗
ig , and the difficulties after linking βig , the difficulty of

item i in group g (g = 0 for reference group, and g = 1 for focal group). The resulting DIF value
for item i is δi = βi1 − βi0. Although this kind of anchoring solves the scale linking problem of
the model, it is clearly not a good kind of anchoring because the difference in difficulty expresses
also overall differences in ability between the two groups.

Equal mean difficulty anchoring means that the mean difficulty in both groups is set to
a given common value, for example, 0.00. This corresponds also with the earlier mentioned
ANOVA kind of linking. The anchoring requires a transformation of difficulties by subtracting
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the mean β∗
.g , so that

I∑

i=1

βig = 0, (6)

where βig = β∗
ig − β∗

.g . The resulting DIF value is δi = (β∗
i1 − β∗

i0) − (β∗
.1 − β∗

.0).
This anchoring method does not suffer from a contamination with an overall group differ-

ence, and it still solves the linking problem. Although it is common practice to anchor in this
way, this method contains the risk of “expanding” DIF to items where there is no DIF, and to
“shrinking” the degree of DIF of the true DIF-tems, as illustrated earlier.

The three alternatives to these two all work with a set of anchoring items, A, which are items
with equal difficulty in both groups:

βi1 = βi0 if i ∈ A = {i | ai = 0}, (7)

where ai is the anchor set indicator, ai = 0 if item i belongs to the anchor set, and ai = 1
otherwise. The three methods differ in how membership of the anchor set A is determined.

Single-item anchoring means that the anchoring set consists of only one item, item i′, so
that βi1 = β∗

i1 − (β∗
i′1 − β∗

i′0), and δi = (β∗
i1 − β∗

i0) − (β∗
i′1 − β∗

i′0), without any further linking
constraints. Also this model solves the linking problem, but it does so in an arbitrary way, by
picking one single item and, therefore, also the definition of DIF is arbitrary because it depends
on just one item.

The first three anchoring methods are all three appropriate for linking purposes, but only
the second, equal mean difficulty anchoring is also appropriate for the identification of DIF. The
following two methods are both appropriate as DIF identification methods, but they do more than
linking. They constrain the model further than is required for scale linking.

Multiple-item anchoring means that one specifies in advance more than just one item which
does not show DIF, and hence more than one item is a member of the anchor set A. This method
works well if the anchoring assumption holds. It implies prior knowledge, based on theory, expert
judgment, or on earlier studies.

All-other anchoring means that each item i in turn is considered a potential DIF item, while
all other items are considered to define the set of anchor items. This assumption is made in an
implicit or explicit way for a variety of DIF indices, which do not require any modeling, but do
make model assumptions nevertheless. This is, for example, the case for the Mantel–Haenszel
(MH) method (Holland & Thayer, 1988), the logistic regression (LogReg) method (Swaminathan
& Rogers, 1990), the standardization method (STD P-DIF) (Dorans and Kulick, 1986), and the
Likelihood Ratio (LR) method (Thissen et al., 1986). All-other anchoring is used both for DIF
identification, and as part of a heuristic. Following the heuristic procedure, an item identified as
showing DIF is omitted, and the procedure is repeated with the remaining items. It is clear that
the end result may depend on the order of the items as used in the heuristic.

It can be concluded from this short overview of anchoring methods that either assumptions
need to be made (methods 4 and 5) which may lead to a misspecified model and, therefore, to
misidentification of DIF, or the type of anchoring can yield misleading results: DIF confounded
with the overall group difference (method 1), DIF inflation and DIF shrinkage in case of asym-
metrical DIF (method 2), or arbitrary DIF (method 3). The best choice is the equal mean difficulty
method (method 2) because it is does not yield a confounding with overall group differences, and
because it doesn’t hinge on an arbitrarily chosen item, while it also does not constrain the model
in ways that might be incorrect.

The ideal method would be one with “posterior anchoring,” which would mean that the
anchor set A is a latent category, and that it is an issue of estimation to find out which items do
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belong to A and which do not. This can be realized with a mixture model approach replacing the
anchor set indicator ai with a latent indicator αi :

βi1 = βi0 if i ∈ A = {i | αi = 0}, (8)

where αi = 0 if item i is a non-DIF item, and αi = 1 if item i is a DIF item indeed.
Note that the latent anchor set is meant to be equivalent with the set of non-DIF items,

whereas the manifest anchor set of the prior anchor method 4 (multiple-item anchoring) can be
a subset of these. This posterior anchoring method leads to the model formulated in (3b).

The posterior approach has two important features. First, it fits with the discrete approach
of DIF, implying that an item shows DIF or not, but it does so without distorting the results in
case DIF is, in fact, gradual and can be captured by a RIP model. This is because the RIM model
is a special case of the RIP model, with πα = 1 (all items being DIF items), to be explained
when the model is described further. Second, the linking issue is solved based on the data and the
estimation of the model, and not on an a priori choice as when one of the five anchoring methods
is used. It makes DIF less relative because not the kind of a priori linking, but the data instead
decide on the linking of the two scales.

7.5. Application of the RIM Model to the Verbal Aggression Data

The RIM model is a combination of the RIP model with an item mixture distribution:

ηpig|αi, θpg,βi0, βi1 = θpg − (1 − αigp)βi0 − αigpβi1 + gpγ, (9)

where ηpig|αi, θpg,βi0, βi1 is the logit of Pr(Ypig = 1|αi, θpg,βi0, βi1), αi is the latent binary
item variable indicating whether item i is a DIF item, αi ∼ Bernoulli(πα), gp is the group
membership of person p: gp = 0 if p belongs to the reference group, and gp = 1 if p be-
longs to the focal group, where γ is the group difference parameter. θpg is the ability of per-
son p belonging to group g, θpg ∼ N(μθg , σ

2
θg

) with μθg and σ 2
θg

as the mean and variance

of the ability in group g, and with identification restrictions μθ0 = 0 and σ 2
θ0

= σ 2
θ1

(this latter
restriction is not necessary for identification, but it was found not having a substantial effect ei-
ther), βi0 is the difficulty of item i in the reference group, and βi1 is the difficulty of item i in
the focal group if αi = 1, whereas the difficulty of item i in the focal group is βi0 if αi = 0,
(βi0, βi1) ∼ BVN(μβ0 ,μβ1,Σβ0β1), with μβ0 and μβ1 as the mean difficulty in the reference
group and also in the focal group if αi = 0, and the mean difficulty in the focal group if αi = 1,
respectively.

For reasons of identification, the restriction μβ0 = μβ1 is introduced. Without this equality,
the model would not be identified because γ and μβ1 can compensate for one another. This does
not mean, however, that the RIM imposes DIF to be symmetrical. What matters for determining
whether DIF is symmetrical or not, is the mean difficulty for the items with a high posterior
probability of belonging to the DIF class.

Two special cases of the RIM model are of interest to see the potential of the model. The first
special case is when the mixing probability πα = 0, which means that there is no DIF, and that
the RIM reduces to the simple RPRI Rasch model. The second special case is when the mixing
probability πα = 1, which means that all items show DIF in the focal group, so that the RIM
model reduces to the RIP model. Hence, one may use the estimate of πα as a diagnostic:

iff πα = 0, then RPRI Rasch;
iff 0 < πα < 1, then RIM;
iff πα = 1, then RIP.

WinBUGS is used to estimate the model. The estimates are as follows: γ = 0.27 (0.23),
σ 2

θ = 1.95 (0.19), σ 2
β0

= 1.32 (0.38), σ 2
β1

= 1.31 (0.47), rβ0β1 = 0.80 (0.18), πα = 0.71 (0.21).
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FIGURE 2.
Scatter plot of item difficulty estimates as obtained from the lmer estimation of the RIM model for the verbal aggression
data.

There is no significant overall difference between the two groups. When the difficulties for the
two item mixture components are plotted as in Fig. 2, the resulting figure is very similar to the one
in Fig. 1. The RIM model does not coincide with the RIP model in this application because the
estimate for πα is smaller than one (πα = 0.71), but on the other hand, the posterior probabilities
of all items are larger than 0.50 (see Fig. 3). It is interesting to see how the items 6, 12, 14,
16, 17, 19, and 20 have the highest posterior probabilities. In sum, this RIM model is hardly
differentiated from the RIP model. Hence, the results obtained with the RIM model are not of
the kind that a discrete kind of DIF is supported. Rather, DIF seems of the RIP type, given the
high value of the mixing probability estimate and all items being identified as DIF items, based
on their posterior probability.

Unfortunately, this also means that the data set is not optimal to illustrate the potential of the
RIM model for DIF identification. Therefore, we decided to generate new data for the items 14,
16, 17, 19, 20, and 23 (with the largest distances from below the bisector in Fig. 1), following the
RIP model, but with difficulties for males that are either 1.00 or 2.00 lower than the estimated
values based on the original data. The corresponding newly generated data sets are called verbal
aggression data minus one (VA-1) and minus two (VA-2), to differentiate them from the original
VA data.

The RIM model was again estimated with WinBUGS. The corresponding mixing probabili-
ties are 0.476 (0.159) and 0.413 (0.123) for the VA-1 and VA-2 data, respectively. Figures 4 and 5
give the corresponding posterior probabilities of belonging to the DIF class if the RIM model is
used.

It is clear from Figs. 4 and 5 that the situation is now quite different than for the original
VA data. The mixing probability estimates are much lower than for the original VA-data, but
still substantially higher than zero. The posterior probabilities shown in Figs. 4 and 5, do clearly
indicate the items 14, 16, 17, 19, 20, and 23 now as DIF items (as it should be, based on the data
manipulation), but in Fig. 4 (VA-1 data) also items 6, 8, and 22 have a posterior probability higher
than 0.50, although clearly lower than the posterior probability of the six. This is not surprising
given the position of the items 6, 8, and 22 in Fig. 1. Item 6 is located above the bisector and
items 8 and 22 are located below the bisector. The situation depicted in Fig. 5 (VA-2 data) is
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FIGURE 3.
Posterior probabilities of belonging to the DIF class of items.

FIGURE 4.
Posterior probabilities of belonging to the DIF class of items for the VA-1 data.

very similar, but now with decreased posterior probabilities, so that only item 6 exceeds the 0.50
threshold.

These results illustrate that the RIM model succeeds in correctly flagging the DIF items
indeed, and that it avoids making false identifications. The items 6, 8, and 22, and especially
item 6, may perhaps be considered DIF items, although not involved in the data manipulation.
Note that DIF is asymmetrical, and that an equal mean difficulty anchoring would export DIF
to all items, while in this application, a quite good identification of DIF items was realized.
Frederickx, Tuerlinck, De Boeck, and Magis (2008) show through several simulation studies that
in fact the RIM model and the resulting posterior probabilities do a better job identifying DIF
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FIGURE 5.
Posterior probabilities of belonging to the DIF class of items for the VA-2 data.

items than the three traditional methods investigated earlier. This suggests that the RIM model is
a successful tool for the identification of DIF.

7.6. Discussion

Two concepts have been developed as an alternative for the common practice. One is the RIP
concept of DIF, where DIF is no longer a discrete event, but described instead with a bivariate
or multivariate distribution of item difficulties. The other is the RIM concept, adding a discrete
but random element to the previous, by introducing a latent binary item variable to indicate
DIF. Both concepts share that they do not need any kind of a priori anchoring and neither are
they iterative. They differ with respect to what can (or should) be done when DIF is unwanted.
Following the RIP concept, there is no way one can adapt the test to eliminate DIF because DIF
is actually bidimensionality in the item difficulties, introduced by the inclusion of different kinds
of persons, just as the bidimensionality of individual differences is introduced by the inclusion
in the test of different kinds of items. However, in a next step, one can use a procedure such as
robust regression in order to flag DIF items as illustrated earlier. Following the RIM concept, one
can adapt the test, omitting all items with a posterior probability of 0.50 of higher of belonging
to the DIF class.

Both the RIP and the RIM approach require modeling, and are therefore vulnerable to mis-
specifications of the model, whereas the robust regression approach can either start from model
estimation results, or can operate with simple marginal statistics without any modeling. While
the robust regression approach can be used for a discrete DIF concept as well as for a gradual DIF
concept, it does lead to DIF identification anyhow. The quality of the identification seems equally
good as that of other methods if DIF is symmetrical, and better if DIF is asymmetrical. A lim-
itation of the method is that it requires DIF to be a minority phenomenon among the items. On
the other hand, one may wonder whether DIF does not lose its meaning if the majority of items
shows DIF, because then it is no longer a disturbance, but the major phenomenon, so that it must
be concluded that the difference between the groups is really of a qualitative kind (De Boeck,
Wilson, & Acton, 2005), and that the items tap different kinds of abilities in the two groups. The
same issue can be raised for random item profiles in a RIP model when their correlation is near
zero. Can one still consider the abilities as being similar?
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It would require further simulation studies, for example, both with a larger proportion and
a smaller proportion of DIF items, with a larger range of DIF values, etc. in order to assess the
qualities of the three approaches illustrated here (robust approach, RIP, RIM) in comparison with
the more traditional methods.

8. General Discussion and Conclusion

Random item models are a rather new approach in the domain of IRT. Because they fit into a
generalizability concept, they have a clear conceptual asset. Ideally, one wants the measurement
of a person to generalize over a domain of similar items, instead of being restricted to the partic-
ular item set under consideration (Briggs & Wilson, 2007). Random item models have also some
interesting assets from a statistical point of view. The number of parameters does not proliferate,
but remains limited instead to distributional parameters, and the random item models fit in with
the general way of using error components to deal with imperfect relations.

On the other hand, random item models also have some drawbacks. First, when also the
persons are random, then the model becomes a crossed random effects model, which is a com-
plication for the estimation, and the available estimation algorithms are limited in number and
experience one has with using them. Second, the notion of random items is still controversial,
because it is not always clear what the population of items would be, and what it would mean
for items to be drawn from that population. Third, the number of items in a test is rather limited,
so that the information for model estimation is limited as well and, therefore, its basis is rather
narrow.

The illustration of random item models was restricted to Rasch type of models. It is a chal-
lenge to extend the approach to the 2PL type of models. However, this also opens new perspec-
tives, such as random item discriminations. Often the estimation of the discrimination parame-
ters is not very robust. Random discrimination models may contribute to the stability of the 2PL
model. This is a topic that deserves further investigation.

In sum, it may be concluded from the application of random item models to the verbal
aggression data set, that these models are promising and useful to solve various kinds of issues.
Of course, further investigation is required for a more definite conclusion.
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