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Abstract
Variability indices are a key measure of interest across diverse fields, in and outside psychology. A
crucial problem for any research relying on variability measures however is that variability is severely
confounded with the mean, especially when measurements are bounded, which is often the case in
psychology (e.g., participants are asked “rate how happy you feel now between 0 and 100?”). While a
number of solutions to this problem have been proposed, none of these are sufficient or generic. As a
result, conclusions on the basis of research relying on variability measures may be unjustified. Here, we
introduce a generic solution to this problem by proposing a relative variability index that is not
confounded with the mean by taking into account the maximum possible variance given an observed
mean. The proposed index is studied theoretically and we offer an analytical solution for the proposed
index. Associated software tools (in R and MATLAB) have been developed to compute the relative index
for measures of standard deviation, relative range, relative interquartile distance and relative root mean
squared successive difference. In five data examples, we show how the relative variability index solves
the problem of confound with the mean, and document how the use of the relative variability measure
can lead to different conclusions, compared with when conventional variability measures are used.
Among others, we show that the variability of negative emotions, a core feature of patients with
borderline disorder, may be an effect solely driven by the mean of these negative emotions.

Translational Abstract
The variability of processes is important across diverse fields, in and outside psychology. When
measurements of these processes are bounded, which is often the case in psychology (e.g., participants
are asked “rate how happy you feel now between 0 and 100?”), most variability indices become
confounded with the mean. This is problematic for interpreting findings related to variability (effects of
manipulation, correlations with other variables), as it is unclear whether they truly reflect effects
involving variability, or are just a side effect of the mean. In the worst case, conclusions on the basis of
research relying on existing variability measures may be unjustified. Here, we introduce a generic
solution to this problem by proposing a relative variability index that is not confounded with the mean.
The proposed index is studied theoretically and we offer an analytical solution for the proposed index,
along with software tools (in R and MATLAB) to compute the relative index for measures of standard
deviation, relative range, relative interquartile distance and relative root mean squared successive
difference. In five data examples, we show how the relative variability index solves the problem of
confound with the mean, and document how the use of the relative variability measure can lead to
different conclusions, compared with when conventional variability measures are used. Among others,
we show that the variability of negative emotions, a core feature of patients with borderline disorder, may
be an effect solely driven by the mean of these negative emotions.
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Most psychological characteristics are not fixed or immutable.
On the contrary, they often tend to change and fluctuate across
time, observers, objects, and contexts (Fleeson & Law, 2015;
Nesselroade & Salthouse, 2004). Our emotions fluctuate with the
ebb and flow of daily life, our behavior continuously adjusts to the
circumstances we find ourselves in, and so on. Even our person-
ality, values, and attitudes, attributes long considered to form the
basis of our stable sense of self, are found to interact with internal
and external factors causing their expression to fluctuate with time
(Baird, Le, & Lucas, 2006; Fleeson, 2004; Wittenbrink, Judd, &
Park, 2001). The patterns of these within-person changes are
studied as an integral part of psychology (Molenaar & Campbell,
2009), with the magnitude of such changes being regarded as
essential in explaining or understanding various psychological
phenomena (Diehl, Hooker, & Sliwinski, 2014). For example,
variability in emotion and mood is believed to play a large role in
well-being (Houben, Van den Noortgate, & Kuppens, 2015), vari-
ability in behavior is thought essential to understand the nature of
personality (Fleeson & Wilt, 2010), variability in cognition is
regarded as an indicator of impending cognitive decline or low
functionality (Ram, Rabbitt, Stollery, & Nesselroade, 2005), vari-
ability in physiology like heart-rate is considered a prime indicator
of parasympathic activity indicative of regulatory capacity (Koval,
Ogrinz et al., 2013; Segerstrom & Nes, 2007) and so on. In sum,
aside from simply examining single instances or trait-levels of
psychological attributes (as reflected by the average levels of
feelings, behavior, and cognition), researchers are increasingly
studying intraindividual variability across a large variety of do-
mains. The study of variability is not limited to within-person
variability as is exemplified by the study of, for instance, income
inequality (Piketty, 2014), or happiness variability over individuals
within a certain country (Kalmijn & Veenhoven, 2005).

Despite the large and growing interest in measures of (intrain-
dividual) variability, it remains marred with a fundamental prob-
lem: Variability is closely intertwined with the mean, especially
when the measurements are bounded. Bounded measurement
scales are very common in psychology (e.g., numerical scales from
0 to 100). In such bounded measurements, there is an inherent
structural relation: Depending on the mean, the range of possible
variability scores is limited differently.1 Consequently, the vari-
ability of a variable is strongly confounded with the mean as a
consequence of the measurement instrument and this confound
may then result in erroneous conclusions. For instance, one may
incorrectly conclude that the set of intraindividual variability
scores (e.g., within-person standard deviation in negative affect)
and some external trait variable (e.g., depression) correlate, while
this correlation may in fact be entirely due to its confound with the
mean.

This problem has been long known (Baird et al., 2006; Eid &
Diener, 1999; Kalmijn & Veenhoven, 2005), and corrections for
the confounding problem have been proposed. Yet, these correc-
tions are problematic, can only be used in very specific situations
or require sophisticated analysis methods (an overview of these
corrections will be given below). In this article, we address this
conundrum by offering an alternative yet simple solution: the relative
variability index, which is defined as the ratio of the variability
divided by the maximum possible variability given the mean. This
correction method removes the inherent structural relation between
the intraindividual mean and variability for any bounded measure,

resulting in a variability measure that is not confounded by the
mean.

In this article, we will focus our attention mostly on the standard
deviation as a measure of variability. However, we also offer
equivalent solutions for several other variability measures such as
the range, the interquartile range, and the root mean squared
successive difference (Jahng, Wood, & Trull, 2008). In addition,
we would also like to point out that while in our writing we focus
on within-person indices of variability, the outlined problem and
solution hold in fact for any measure of variability (e.g., within-
country variability).

The remainder of the article is organized as follows. First, we
formally define the various variability measures. Second, we dem-
onstrate why and how these variability measures are confounded
with the mean. Third, we discuss why existing proposals that deal
with this confound are limited or problematic. We then propose an
alternative solution that eliminates this confound labeled the rel-
ative variability index and study it theoretically. Finally, we illus-
trate the use of the relative index in a number of (large) real-life
data sets, and demonstrate in two data sets how one can arrive at
different conclusions depending on whether the confound is prop-
erly taken into account or not.

Method

Measures of Intraindividual Variability

Over the years, intraindividual variability has been operational-
ized in different ways. In order to introduce these measures, let us
first give some notation. Consider a participant i (where i can range
from 1 to K). Assume Ni measures are collected from each par-
ticipant (e.g., repeated assessment of an emotion item). Based on
this set of measurements for participant i, we can compute the
average Mi and a variability measure Vi. Mi is given by

Mi � 1
Ni

�
j�1

Ni

xi,j

where xi,j is measurement j of individual i.
As for a variability measure Vi, there are many options. The

simplest and most prominent of the many alternative operational-
izations is the intraindividual standard deviation (SD; Nesselroade
& Salthouse, 2004; Ram & Gerstorf, 2009). The SD is a function
of the average (squared) deviation observed within-person fluctu-
ations display around their mean level:

SDi �� 1
Ni � 1 �

j�1

Ni

(xi,j � Mi)
2.

The use of the intraindividual SD to characterize within-person
change is long-standing and widespread, and for several good
reasons: It captures a key aspect of the time-dynamics of a process
or attribute (namely the amplitude of its changes), it is relatively

1 Obviously, this can be formulated the other way around: Depending on
the variability, the range of possible mean scores is limited differently.
However, in this article, we consider the mean to be the first and primary
statistic to consider. This means that for variability to play a role, it should
contribute something over and above the mean.
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simple to calculate, and, it is the most commonly used measure of
spread.

Other measures have been used as well, such as the root mean
squared successive difference (RMSSD) which is a function of the
averaged squared change of an individual from one time point to
the next (Jahng et al., 2008):

RMSSDi �� 1
Ni � 1 �

j�1

Ni�1

(xi,j�1 � xi,j)
2.

Yet other measures reflecting variability for person i one may
consider are the range (Ri, the difference between the maximum
and minimum observation of a person) or the interquartile range
(IQRi, defined as the difference between the third and first quar-
tile).

In this article, we take it for granted that calculating averages
and standard deviations (or RMSSD, etc.) on a sample of obser-
vations are meaningful operations. If we measure the sample of
shirt number for a footballer throughout his career, then an average
and standard deviation are not very meaningful numbers. How-
ever, for a set of ratings to an emotion item (e.g., how happy are
you?), such calculations are meaningful and we follow a long
tradition in psychology here. In addition, a variability measure
such as RMSSD requires even more from the design to make
sense: In case of the RMSSD, the data need to have an underlying
time ordering. This issue will be revisited in the Discussion.

The Problem: Confounding With the Mean

In practice, we find that when measurements are bounded, this
variability measure V is related to the mean M (when we refer in
general to the mean and variability measures, the person index i is
dropped). As a consequence of the relation between V and M,
results regarding V will be confounded by M (Baird et al., 2006;
Eid & Diener, 1999; Kalmijn & Veenhoven, 2005). To explain this
confounding, consider a measurement of subjective momentary
happiness bounded between 0 and 100, for example, because
participants were asked “How happy do you feel now (between 0
and 100)?” Obviously, the mean will be bounded between 0 and
100. But more interestingly, the variability will also be bounded.
Variability measures are always bounded from below by zero (i.e.,
they are always positive), but for bounded measurements the
variability will also have a maximum. This maximal attainable
value for the variability measure is dependent on the mean. How-
ever, the exact functional form (i.e., how the maximum attainable
variability varies as a function of the mean) is far less obvious. Due
to this maximum of the variability measure, and because it is a
function of the mean, the variability measure itself will also be
related to the mean.

Let us elaborate our example one step further. Assume a col-
lection of 1,000 (simulated) time series of each six measurements
(thus Ni � 6 for all i). All measurements are bounded between 0
and 100. Four instances of these time series are shown in the top
panel of Figure 1. In the four middle panels, the relation between
the mean and four variability measures (SD, RMSSD, IQR, and R,
respectively) is shown for all 1,000 time series. As expected, all
the means are bounded between 0 and 100 and all variability
measures are bounded from below by zero.

The maximum possible variability, denoted by max(V |M) is
shown by a red line. The precise functional form of max(V |M)

depends on the particular variability measure used. As can be seen
from Figure 1, the type of dependence can be quite complex. As
the maximum variability is dependent on the mean, the variability
measure itself will also be related to the mean. In an extreme case,
the mean of the time series even defines the variability exactly. For
example, if the measurements are bounded between 0 and 100, the
time series of a person i with mean Mi � 100 always implies a
variability measure Vi � 0. This is easy to see: The only way a set
of values can have such a mean is if all measurements are equal to
100, therefore the variability must be zero.

The direct consequence of the relation between the mean and the
variability is that, when evaluating the effect of a manipulation on,
or the association between a variable of interest D and the vari-
ability measure V, it is quite likely that the average M is a third
variable that may (partly) account for the observed effect or
relation.

The Existing Solutions and Why They are Problematic

Broadly speaking, one can distinguish between four types of
existing solutions to the problem of the relation between mean and
variability for bounded measurements that can be easily imple-
mented.

First, the easiest and most common way (e.g., Koval, Pe, Meers,
& Kuppens, 2013) to tackle this problem is to use regression
analyses and statistically control for the mean by including it as a
predictor variable:

Di � �0 � �1Vi � �2Mi � εi. (1)

Such an approach ensures that the variability V is not credited
for the linear relation between the mean M and the outcome
variable D.

However, the use of this regression solution is not without
problems. First, in some situations the strong dependence between
M and V may lead to problems of multicollinearity. Second,
nonlinear dependencies between M and D are ignored. Third,
whatever dependency between M and V exist, the relation between
another variable of interest and the variability V will be difficult to
interpret. For example, �1 is commonly understood as the amount
that D is expected to increase if V is increased by one and M is held
constant. However, if M and V are related to each other, it makes
no sense to assume V will increase while M stays constant, making
the interpretation problematic. This problem becomes worse when
there is multicollinearity.

A second proposed solution is to create a flexible parametric or
nonparametric model to relate V to M: Vi � f̂�Mi� � εi (Baird et al.,
2006; Eid & Diener, 1999). We can then use the residual εi �
Vi � f̂�Mi� as a purified substitute for Vi. Again, there are several
disadvantages with this approach. First of all, Vi � f̂�M� is difficult
to interpret as a variability measure. Second, we only want to undo
the effects of the bounds but we do not want to partial out any
meaningful variation in V. However, if both V and M jointly
depend on another psychological construct, both V and M would
also be related to each other (Kalmijn & Veenhoven, 2005) and
f̂�M� would be strongly influenced by this extra interdependence.
Third, if f̂�·� is chosen to be a nonlinear function, the result can
become very sensitive to noise in the data. A third solution is to use
the coefficient of variation:
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CVi �
SDi

Mi
. (2)

Unfortunately, the CV also suffers from two shortcomings.
First, it can only be used when variability is measured with the
standard deviation; there is no analogue for other variability
measures, such as the RMSSD or the range R. Second, it is
designed only for a situation where the data are bounded by
zero from below (e.g., reaction time [RT] or income), but not by
an upper limit.

A fourth and last solution makes use of latent variable models
(Lesaffre, Rizopoulos, & Tsonaka, 2007; Skrondal & Rabe-Hesketh,
2004). Several approaches are possible. A first approach is proposed
by Lesaffre, Rizopoulos, and Tsonaka (2007) and based on the logit
normal distribution, which is a bounded distribution. A random vari-
able X follows a logit normal distribution if the logit transform of X
(i.e., the inverse mapping function given by log�X � L

U � X�, with L and U
being the lower and upper boundary, respectively) follows a normal
distribution with mean Mlatent and standard deviation with SDlatent
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Figure 1. This figure shows the influence of the bounds on the relation between the mean and various
variability measures. We simulated 1,000 random time series with each six time points (Ni � 6 for all i) using
a beta autoregressive model (Rocha & Cribari-Neto, 2008) and random parameters for the coefficients (the mean
and the inverse of the precision were sampled from a uniform distribution between 0 and 1, the autoregressive
parameter was sampled from a uniform distribution between �1 and 1). In the top panel four such time series
are shown. For each time series the mean and four variability measures are computed and these are shown in the
four middle panels, with the variability measures V plotted against the mean M. The points in these scatterplots
originating from the top four time series are shown in the corresponding color. max(V |M) is plotted as a red line.
On the bottom four panels, the relative variability measures V � are shown against the mean M. From left to right
the variability measures are the SD, the RMSSD, the IQR, and the range. Again, the four colored dots are the
dots associated with the time series shown in the top panel.
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(Aitchison & Shen, 1980). Lesaffre et al. (2007) adjusted the
model so that it can be applied to discrete data (e.g., all integers
between 0 and 100, as is used in various experience sampling
[ESM] data scales) but also such that the boundary values can be
observed. In a first step, the bounded distribution is divided into
bins so that each discrete point is in the middle of one bin (e.g., for
the observation 50, the bin ranges from 49.5 to 50.5). Then the
likelihood of each discrete point is defined as the probability mass
of the logit transform of this bin, according to the latent normal
distribution. For example data point xi,j � 50, included in the bin
ranging from 49.5 to 50.5, of participant i has the following
contribution to the likelihood:

L�xi,j � 50� � ��logit(50.5) � Mlatent,i

SDlatent,i
�

� ��logit(49.5) � Mlatent,i

SDlatent,i
�, (3)

where � is the cumulative distribution function of the standard
normal distribution. The product of the individual likelihoods of all
the data points can then be numerically maximized to estimate
Mlatent,i and SDlatent,i.

A second approach to make use of a latent variable model for
bounded measurements assumes an unbounded distribution (e.g., a
normal or a logistic) underlying the measurements of each partic-
ipant but in this case the end points of the scale acts as thresholds:
the probability mass falling below and above the thresholds in the
latent model is then considered to be the probability of observing
the lower and upper endpoint, respectively.2 Such models are
related to Tobit regression models (Skrondal & Rabe-Hesketh,
2004). We will not further consider this second approach but only
include the first approach proposed by Lesaffre et al. (2007), but
the obstacles to applying the latter approach that are given below,
also apply to the extension of Tobit regression.

In both examples, both the mean and the variance of the latent
distribution are assumed to be person specific. As these (person
specific) latent distributions are unbounded for the mean and only
bounded from below for the variance they do not constrain one
another, and so no dependency is induced. There are three draw-
backs of this solution. First, all the methods rely on latent distri-
butions which are parametrized using the mean and the standard
deviation or variance. It is unclear how other variability measures
such as the range R and the RMSSD should be incorporated.
Second, this solution also gives a new interpretation to the person
specific means (e.g., the latent mean can be smaller than zero while
all observations are larger than zero) and so the person specific
mean cannot be computed anymore using the sample average. This
would make the use of such methods backward incompatible with
the existing extensive literature on the effect of the mean. It is not
known how the sample average, which is most used in the litera-
ture, could be related to the same constructs as the latent mean.
Third, the solution may lead to quite complex models that have to
be estimated per participant. This may be hard because of insuf-
ficient data. A solution is then to work with a mixed or hierarchical
model, but then a computationally intense numerical estimation
process is required (Hedeker, Berbaum, & Mermelstein, 2006;
Hedeker, Demirtas, & Mermelstein, 2009). In addition, to evaluate
the association between a variability measure and variable of
interest D in a hierarchical model, one must allow for covariates

influencing the person specific variability of these latent distribu-
tions (Hedeker et al., 2006, 2009; Lesaffre et al., 2007). In both
cases (hierarchical or not), the models are nonstandard and this
makes these approaches less suited for the applied researcher.

To sum up, we find ourselves in a situation in which researchers
want to study within-person variability and its antecedents, corre-
lates, and consequences, but the measures used to study variability
are severely confounded with the mean. Several solutions have
been proposed, but each of the currently proposed solutions has a
number of shortcomings. As a result, most studies in this field
gravitate toward the simplest solutions: using linear regression.

The Relative Variability Index

We propose the relative variability index as an alternative so-
lution to the problem that measures of variability are confounded
with the mean when relying on bounded measurements. Our so-
lution can be applied widely to several variability measures such as
the SD, RMSSD, IQR, and R.

The fundamental cause of the dependency between the mean
and variability is the shape of the region of support of the mean
and the variability measures (the region of support is defined as the
region where mean-variability observations can occur). For all
variability measures, shown in the middle row plots of Figure 1,
the region of support has a nonrectangular shape. This means that
the mean and variability are not independent variables. More
technically, if we assume that the mean and the variability are
continuous random variables3 and the region of support is not the
Cartesian product of the univariate (or marginal) regions of sup-
port, the mean and variability cannot be considered independent
random variables (see Holland & Wang, 1986).

Counteracting the dependence. To rectify the dependence
between mean and variability, we will define the relative variabil-
ity index V� that transforms the bivariate region of support into a
rectangle. The easiest way to achieve this is to divide by the upper
bound:

Vi
* �

Vi

max(Vi | Mi)
, (4)

where max(Vi |Mi) is the maximum variability given a mean Mi

for individual i. The relative variability is denoted with a star, for
example, SD� for the relative standard deviation or RMSSD� for
the relative RMSSD.

It is evident from the definition that V� is restricted to lie
between zero and one: The relative variability can be seen as the
proportion of variability that is observed, relative to the maximum
possible variability that can be observed given a certain mean.

2 Again we assume that our measurements are on a continuous scale and
for which calculating, for example, a sample average is a meaningful
operation. In case of purely discrete ordinal data, there are a number of
thresholds such that the areas under the latent distribution below, between,
and above thresholds corresponds to the probabilities of responding in the
categories. However, the disadvantages mentioned below also apply to this
approach.

3 If the random variable representing an individual measurement is
continuous, then the mean and variability will be continuous as well. This
assumption may also hold approximately when using a fine-grained mea-
surement scale (e.g., from zero to 100) or when having a coarser scale but
averaging across many measurements (i.e., a large ki).
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After the correction, V� is much less confounded by the mean.
This is shown in the lower panels of Figure 1. The relative
variability tries to extract the unique information, independent of
the mean.

The meaningfulness of the relative variability can further be
illustrated with hypothetical data where a participant is repeatedly
measured on a scale between 0 and 100. A participant with an
alternating time series of zero and one has the same standard
deviation as a participant with alternating ratings of 50 and 51.
However, the first participant will have a much larger relative
standard deviation. We think that this difference in relative stan-
dard deviation is justified because the difference between zero and
one (with an average of 0.5) is intuitively perceived larger than the
difference between 50 and 51 (with an average of 50.5).

The correction from Equation 3 will not ensure that V � and M
are by default independent because the relative variability only
removes the dependence that was introduced by the boundedness
of the scale. Of course, both the variability and the mean may
depend jointly on another psychological construct, which would
also result in interdependence (Kalmijn & Veenhoven, 2005).

For the SD (and variance), RMSSD (and MSSD), IQR, and R
(i.e., the range), we derived analytical expressions that makes it
possible to easily compute max(V |M); (see online supplemental
material; Kružík, 2000). Some of the calculations (e.g., for
RMSSD�) rely on an algorithm to find the exact solution, but no
numerical optimization is needed, which avoids a large computa-
tional burden. Therefore, calculating V� is straightforward. Our meth-
ods are implemented in MATLAB and R, and they are available
online (http://ppw.kuleuven.be/okp/software/relative_variability/).

Behavior close to the bounds and weighting. If M is exactly
equal to the lower or upper bound, no variability is observed
because each individual observation that goes into the computation
exactly equals M. In this case, max(V |M) will be zero and there-
fore the division in Equation 3 is not possible. Participants with a
mean value M equal to one of the bounds, will have to be omitted
from further analysis.

However, measuring the variability for participants with a M
close to the bounds is also not straightforward. One could compare
the current method with a magnifying glass, making it still possible
to detect variability in the data near the bounds. In an ideal world
where measurements had infinite precision and no measurement
error, this would not be of major concern. Unfortunately, that is not
the case. As a result, our magnifying glass (i.e., the relative
variability index) may produce an undesirable amplification of
errors in these regions. Our relative variability index shares this
problem with the more known coefficient of variation, where a
similar mechanism is at play close to the zero lower bound.

Luckily, we know exactly by how much the errors near the bounds
are inflated, namely by one over the maximum possible variability.
This means that the error variance of the relative variability is
inflated with one over this maximum squared. Therefore, we can
take the inflation into account in any further analysis, for example
by weighting each relative variability with the inverse of this
inflation factor,

wi � (max(Vi | Mi))
2. (5)

Of course, it is impossible to know whether persons with data
near the bounds really have a low uncorrected variability (e.g., SD)

or whether the diminished variability is solely due to the bounds.
In any case, no analysis should be too dependent on these partic-
ipants with extreme means and variabilities. Therefore, also if one
chooses not to use the relative variability one may check the
influence of these persons by using a weighted analysis (e.g.,
weighted regression; Faraway, 2004) and investigate if the analysis
is sensitive for this change.

Prior to the use of the weights of Equation 5 in an analysis, the
weights should be normalized so that they sum to the number of
observations in the analysis: �i�1

K wi � K (K being the number of
participants). In an unweighted linear regression, such as Equation
1, the parameters are found by minimizing the sum of squared
errors �i�1

K εi
2. In the weighted variant with K observations the

parameters are estimated by minimizing

�i�1
K wi εi

2,

the weighted sum of squared errors.4

This weighted linear regression is designed for data where the
variance of εi is inversely related with wi (Faraway, 2004), which
is then reflected in the criterion variable. In our case however we
only know the increased variance of V�, one of the predictors in
the model. In this situation, using a weighting scheme leads to a
decreased effective sample size, denoted as Keff. A useful formula
for Keff can be found in important sampling (Elvira, Martino,
Luengo, & Bugallo, 2017; Kong, 1992):

Keff � K2

�i�1
K wi

2
. (6)

Keff is maximal and equal to K when all the weights are equal,
and normalized to wi � 1. A major consequence of weighting is
that the degrees of freedom of the analysis should be adapted to
represent the Keff. If not all the weights are the same, Keff will be
smaller than K, leading to a decrease in power. Because Keff may
be a real number, the degrees of freedom in the regression analyses
may be real numbers (much as in repeated measures ANOVA
where a nonsphericity correction is applied).

Using the weighting scheme from Equation 5, results can be
interpreted as the product of any linear regression. As in regression
analysis, it is not recommended to extrapolate and to overgener-
alize the interpretation of the results to situations for which there
were no data. Similarly, it is not recommended to make predictions
for new observations with means near the bounds. Even if there
were observations near the bounds with which the regression was
build, they were significantly down-weighted.

The Relative Standard Deviation and Its Relation to
Other Variability Measures

If the relative variability is computed for the standard deviation
(i.e., SD�) there are some interesting relations with existing indi-
ces. In fact, the relative standard deviation can be seen as an
extension of the (independently developed) � coefficient (Golay,
Fagot, & Lecerf, 2013):

4 In both MATLAB and R, one can assign weights for any generalized
linear model using glmfit and glm, respectively (MATLAB, 2016; R
Core Team, 2015). Examples on how to use the relative variability in
combination with a weighted linear regression are given in the online
package in both MATLAB and R.
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�i � SD
lim

Ni¡�
max(SDi | Mi)

� SD*.

If the number of measurements per participant Ni goes to infin-
ity and the standard deviation is used as variability measure, the
relative variability index gives similar results as the � coefficient.

Although the � coefficient is based on an analogue idea (divid-
ing the standard deviation by its limiting maximum value), it has
some shortcomings: It is not suited for small samples, it is only
developed to use for the standard deviation of accuracy measures,
and it cannot be applied to other variability measures. In addition,
the index has never been tested on real data.

Second, if the measurements are only bounded by a lower limit
(e.g., 0) without an upper bound, then the relative standard devi-
ation SD� is proportional to the coefficient of variation (see online
supplemental material). This means that the SD� will result in the
same conclusion as the coefficient of variation in data sets where
every person has the same number of measurements. Thus, the SD�

can be considered as a generalization of the coefficient of variation
for doubly bounded measures.

The Relative Standard Deviation for Some Common
Bounded Distributions

To get a deeper understanding of the relative variability index,
we will study it in the context of some known (and lesser known)
distributions defined with a bounded region of support. As there
are often analytical results for the standard deviation of these
distributions we will focus here on the relative standard deviation.
Because most bounded distributions are originally defined be-
tween zero and one (and every measurement instrument can be
rescaled to this interval), also we will adopt these bounds in the
following paragraphs.

Bernoulli distribution. The most basic bounded distribution
is probably the Bernoulli distribution leading to a binary outcome
where the only possible outcomes are the bounds themselves. An
example time series would be a series of Ni � 6 correct (xi,j � 1)
or wrong (xi,j � 0) answers (e.g., {1, 0, 0, 1, 0, 1}).

The relation between the mean M and the standard deviation SD
(calculated based on repeatedly observed binary random variables)
for different persons with different probabilities pi is shown in
Figure 2. For the Bernoulli, the standard deviation is not only
bounded by the mean, but it is an exact function of the mean (see
online supplemental material):

SDi ��Mi(1 � Mi)
Ni

Ni � 1.

Any relation we find between the standard deviation and an
outcome variable D is just an indirect effect of the mean. As shown
in the online supplemental material, the relative standard deviation
reveals that there is indeed no extra information in the variability.
The relative standard deviation is exactly equal to one for all
persons (irrespective of their observed series or their mean):

SDi
* � 1.

Binomial distribution. Next, we look at the binomial distri-
bution. As the binomial distribution is a generalization of the
Bernoulli model, it will lead to similar results. Assume that a

single observation for a participant is generated by a binomial
distribution with number of trials n and success probability pi.
Then the probability of observing a proportion of m successes in n
trials is given by:

Pr�xi,j � m
n � � �n

m � pi
m(1 � pi)

n�m. (7)

An example series could consist out of the grades on Ni � 6
subsequent tests, each scored on n � 10 points, such as
	 8

10 , 7
10 , 6

10 , 10
10 , 9

10 , 8
10
 � 	0.8, 0.7, 0.6, 1, 0.9, 0.8
. Assuming the

length of the time series Ni goes to infinity, the population mean
and standard deviation are given by

Mi � pi

and

SDi ��Mi(1 � Mi)
n .

Again there is a clear relation between the mean and the
standard deviation. As opposed to the normal standard devia-
tion, the relative standard deviation is only a function of the
number of trials n:

SDi
* � 1

�n
,

again showing that standard deviation does not add anything
beyond the mean. Using simulations we show in Figure 2 that the
results above also hold approximately for Ni much smaller than
infinity.

Beta distribution. Another well-known bounded distribution
is the beta distribution. A common parametrization of the beta
distribution uses the mean � and the concentration or precision v
as parameters (Kruschke, 2015; Rocha & Cribari-Neto, 2008). The
concentration v is a measure of how concentrated the distribution
is around a certain mean �. As shown in Figure 2 and in the online
supplemental material, sampling from distributions with the same
concentration will lead to the same relative standard deviation. It
is also interesting that due to the inflation problem near the bounds,
the relative standard deviation becomes much more variable. This
is clearly illustrated in Figure 2.

Logit normal distribution. As a last distribution we will
discuss is the logit normal distribution (Aitchison & Shen, 1980),
which has been used by Lesaffre et al. (2007) as discussed above.
This distribution can be constructed by an inverse logit transform
of the normal (which maps an unbounded random variable to the
unit interval). The parameters of the logit normal are the mean
�latent and standard deviation �latent of the underlying normal.
Unfortunately, the logit normal has no analytical expressions for
the mean and standard deviation (on the bounded interval). But as
is shown in the simulations in Figure 2, the relative standard
deviation is nearly constant for a large latent standard deviation.
For a lower value of the latent standard deviation, the relative
standard deviation flattens the relation the between mean and
variability, but it seems to undercorrect (i.e., there is still some
degree of dependence). Still, the relative standard deviation is
much more similar to the �latent as the normal standard deviation
which does not correct at all: In Figure 2, over all simulated latent
standard deviations the correlation between �latent and the SD� is
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0.77 while the correlation between �latent and the SD is only 0.50.
As the correlation between the SD and the SD� is again 0.77 one
could state that the use of the �latent of the logit normal distribution
as a more extreme correction as the SD�.

In conclusion, our analysis shows that for several bounded
distributions, the mean and the standard deviation are inherently
mathematically related while the mean and the relative standard
deviation are not. This holds for the Bernoulli, binomial, beta, and
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Figure 2. Simulation of different distributions with random means and with number of measures per time series
Ni � 100. In the left panels we show the mean against the standard deviation and on the right panels we show
the mean against the relative standard deviation. Top panels: Samples from binomial distributions as shown in
Equation 7. Points with the same color come from a distribution with the same number of trials n. Note that we
display the proportions (number of successes divided by number of trials). The top distributions in blue are the
Bernoulli distributions, where the maximum variability is always exactly achieved (i.e., a binomial with a single
trial). Middle panels: beta distributions with different concentrations or precisions v (same color refers to
distributions with same concentration). Bottom panels: logit normal distributions (points with same color come
from distributions with same latent standard deviation �latent).
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the logit normal distribution. For the first three, the dependence is
completely removed when using the relative standard deviation. If
the underlying distribution is logit normal, the relative standard
deviation will take out a substantial part of the mathematical
dependency, but not all, and hence some form of dependence
remains.

Simulation Study

Before we apply the relative variability measure to real data sets
we want to test how it behaves in cases where we know how an
individual difference or trait variable (e.g., depression, denoted
generically as D in the simulation study) is related to the mean and
variability of a time series in a sample of persons.

First, we created several time series data sets. Each data set
included K � 50 (i.e., number of participants) series of length Ni �
50, assuming a response scale that runs from zero to 100. Each
data set was created with one of the options shown in Table 1 and
Figure 3. For each data set, we sampled 50 means and variabilities
from different ranges, depending on the option. To investigate the
effect of data sets with means close to the bounds we simulated
data sets both with means close to the bounds as well as with
means far from the borders zero and 100. For most options we
chose independent mean and variabilities, but for obvious reasons
previously discussed, this is not possible when the standard devi-
ation SD is used. Using the sampled means and variabilities we
then simulated data sets with the beta distributions or the inverse
logit of latent normal distributions. All data were then rounded to
the nearest integer to imitate widely used ESM scales.

Second, as shown in Table 1, we then created an outcome
variable D that is linearly dependent on the mean and the variabil-
ity. For all options in Table 1 (to test for the Type I error), we also
created data sets where the dependent variable was independent of
the variability measure, after controlling for the mean. For each
option we created 1,000 data sets with and without an effect.

Finally, we tested if we could find an effect of the variability
using the following six analysis models:

Di � �0 � �1SDi � εi (8a)

Di � �0 � �1SDi � �2Mi � εi (8b)

Di � �0 � �1SDi
* � �2Mi � εi (8c)

Di � �0 � �1SDi � �2Mi � εi �weighted regression� (8d)

Di � �0 � �1SDi
* � �2Mi � εi �weighted regression� (8e)

Di � �0 � �1SDi,latent � �2Mi,latent � εi (8f)

So this means that simulation Options 1–10 (each with and
without an effect of variability) are crossed with the analysis
Models a–f. In Equations 8a–8f, Mi, SDi and SDi

� are the computed
mean, standard deviation, and relative standard deviation for the
observed time series of individual i. In addition, SDi,latent and
Mi,latent are the estimated mean and the standard deviation of the
latent logit normal distribution, using the likelihood as described in
Equation 3.

We included options where the outcome variable D is simulated
using the normal SD the relative SD� and the latent SDlatent, such
that Models b, c, and f are all correct (and wrong) in a subset of the
simulations. Model b is the model often assumed in contemporary
data analysis (Koval, Pe, et al., 2013), Model 8c is the model
proposed in this paper and Model 8f uses the SDi,latent, an alter-
native solution for the mean variability dependency problem. We
did not include an option where the outcome variable D is inde-
pendent of the mean M as this seemed unrealistically for most
psychological contexts, therefore Model 8a is never correct. Mod-
els 8d and 8e where included to investigate the weighted approach
we recommend when data with means near the bounds cannot be
trusted or one does not want to fully commit to one of the proposed
models, which differ the most from each other at the bounds.

To compare the models, we calculated in what proportion we
find a significant effect (i.e., using a significant threshold of 0.05)
in the correct direction.

Table 2 shows the results. Generally, in most cases the correct
model leads to the highest power, or at least the power of the
correct model is close to the best. In addition, if there is no effect,
the true model has a Type I error rate equal to the nominal 5%.

When the mean M is simulated from a range away far from the
borders zero and 100, the models do not differ much from each

Table 1
The Different Options Discussed in the Simulation Study

Option Mean Variability xi Simulation model

1 Mi 	 U(25, 100) SDi
* � U�0.4, 0.8� Beta Di � Mi��200SDi

*� � 50εi
2 Mi 	 U(25, 75) SDi

* � U�0, 0.8� Beta Di � Mi��100SDi
*� � 50εi

3 Mi 	 U(75, 100) SDi
* � U�0.4, 0.8� Beta Di � Mi��200SDi

*� � 50εi

4 Mi 	 U(25, 100)

SDi � U�50 �
Mi

2
2 , 50 �

Mi

2
� Beta Di � Mi(
2SDi) 
 50εi

5 Mi 	 U(40, 60) SDi 	 U(20, 40) Beta Di � Mi(
4SDi) 
 50εi

6 Mi 	 U(75, 100) SDi 	 U(0, 100 � Mi) Beta Di � Mi(
2SDi) 
 50εi

7 Mi 	 U(25, 100) SDi
* � U�0.4, 0.8�, SDi � SDi

*max�SDi 	 Mi� Beta Di � Mi(
2SDi) 
 50εi

8 Mi,latent 	 U(�4, 8) SDi,latent 	 U(2, 6) Logit normal Di � Mi,latent(
10SDi.latent) 
 50εi

9 Mi,latent 	 U(�5, 5) SDi,latent 	 U(0, 6) Logit normal Di � Mi,latent(
10SDi.latent) 
 50εi

10 Mi,latent 	 U(2, 4) SDi,latent 	 U(0, 2) Logit normal Di � Mi,latent(
30SDi.latent) 
 50εi

Note. Columns 2 (mean) and 3 (variability) show the distributions (and corresponding ranges) from which the mean and variabilities are drawn. These
distributions and ranges are visualized in Figure 3. Column 4 (xi) shows the distributions from which the time series are simulated, using the previously
defined mean and variability. Note that all xi are rounded to the nearest integer. In the last column (simulation model) it is shown how the outcome variable
D is created (the parentheses indicate that data are simulated with and without an effect of variability).
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other. The relative change from the normal standard deviation to
the relative standard deviation is small. This is the case in Option
2, 5 and 9 and leads to only a small difference in power between
the possible models.

For Options 1 to 3, the true model, which also performs best, is
model c, a linear regression including the mean M and the SD�.

For Options 4 to 7, Model b is the true model, and this is a
linear regression of the mean and the normal standard deviation.

However, the standard deviation only clearly outperforms the
relative standard deviation SD� when we simulate a SD related
to the maximum possible standard deviation as in Option 7.
Although Options 4 and 6 also include means M near the
bounds, Model b does not outperform Model c. If the standard
deviation decreases linearly to zero, the SD does not differ
much from the SD�; the average correlation between the SD�

and the SD is respectively 0.97 and 0.88 for Options 4 and 6. In

Table 2
The Results From the Simulation Study That Follows From Crossing the 10 Simulations Models
(With and Without an Effect of Variability)

Option Effect a: SD b: SD and M c: SD� and M
d: Weighted
SD and M

e: Weighted
SD� and M

f: SDlatent
and Mlatent

1 Yes .05 .55 .77 .66 .76 .58
No .35 .04 .05 .05 .04 .09

2 Yes .85 .88 .89 .88 .88 .82
No .04 .04 .04 .04 .04 .04

3 Yes .09 .08 .21 .13 .19 .06
No .12 .06 .06 .05 .04 .05

4 Yes .07 .10 .11 .11 .11 .10
No .76 .05 .04 .06 .06 .07

5 Yes .80 .82 .81 .82 .82 .71
No .04 .04 .04 .04 .04 .05

6 Yes .13 .18 .16 .21 .21 .16
No .08 .05 .05 .07 .06 .04

7 Yes .08 .34 .20 .26 .24 .13
No .33 .05 .05 .06 .05 .09

8 Yes .27 .33 .38 .33 .38 .40
No .07 .06 .06 .06 .06 .06

9 Yes .33 .32 .32 .32 .32 .33
No .06 .06 .06 .06 .06 .05

10 Yes .50 .40 .41 .40 .41 .74
No .06 .05 .05 .05 .05 .05

Note. Column 1 shows the option that was used to simulate the data as described in Table 1. The second
column shows weather there was an effect of the variability or not. The other columns show the proportion of
significant results (at the 5% level) for the regression coefficient of variability for the different models a–f from
Equation 8. If there was an effect, only the proportion of data sets that found an effect in the right direction are
shown. If there was no effect, the proportion of data sets that found any effect is calculated. If there was an effect,
the highest power is shown in bold. The shaded cells refer to the situation where the analysis model is the true
model.
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Figure 3. The areas used to simulate means and variabilities from, as described in Table 1. For this figure we
simulated 500 means and variabilities for each option. Throughout all options, three kind of true models were
used. One using the SD� for which the ranges are shown in the left panel, one using SD for which the ranges
are shown in the middle panel and one using the SDlatent for which the ranges are shown in the right panel. For
each model we included one mean area that concentrates around the middle where M � 50, far from the upper
bound 100 and lower bound 0, one area which covers the middle (50) and ranges up to the upper bound and one
which concentrates in the area just under the upper bound.
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Option 7 on the other hand, the correlation between the SD� and
the SD is only 0.59. Such that when one assumes that there is
an effect of the SD it is more difficult to find it using the SD�.
Note that only in situations like Option 5, with no observations
near the bounds, we can simulate M and SD independently. In
the other options, the SD is somehow related to the mean M
such that the effect of the SD on the outcome variable D could
also be interpreted as an indirect effect of the mean. Model b
might be able to handle the linear dependency between the
mean M and the SD in Options 4 and 6 but not the nonlinear
dependency of Model 7. In this sense, the increased power of
Model b for Option 7 may partly be seen as incorrectly mod-
eling an effect of the mean M as variability.

In Options 8 to 10, the true model is model f, a linear regression
including Mlatent and SDlatent. As we saw in the previous section
that the SDlatent can be seen as a more extreme version of the SD�

it is therefore logical that models including SD� slightly outper-
form models including SD. In Option 10, with only means near the
bounds, SDlatent is most different from the SD and the SD�. The
inflation of the SDlatent compared with the normal SD is even more
extreme as the SD�. Near the bounds, this inflation is highest, so
here it differs most from the normal SD and the relative SD�. If the
outcome variable D is assumed to be related to this inflated
variability measure, both the SD as the relative SD� will under-
perform as shown in Table 1.

Using Model 8a, where the outcome variable is assumed to be
independent of the mean M, is clearly a bad idea if the outcome
variable is in fact dependent on the mean. Neglecting the mean
leads to inflated Type I errors and decreased power.

In general, for the correct model, a weighted analysis leads to a
lower power, but for the wrong model a weighted analysis may
even lead to a higher power, such as in Options 1 to 3 and 7. The
observations with means near the border are weighted less, and
these are exactly the observations which deviate the most between
the models. Despite not being shown in Table 2, it should be noted
that that, without the use of the recalculated sample size as in
Equation 6, also the weighted regression lead to increased Type I
errors (i.e., over 0.1).

Besides Model a, Model f leads to the highest Type I errors. For
high variabilities the estimates of SDlatent have a high variance
leading to heteroscedasticity, which in turn may lead to an in-
creased Type I error.

Empirical Results

We will now apply our measure to five real-life data sets. First,
using three so-called big data examples, we will show the omni-
presence of the mean-variability dependency and how this depen-
dency is avoided by using the relative variability. Second, using
two smaller data sets, we will show how this dependency can
influence conclusions if it is not treated properly. For illustrative
purposes, in each application we will focus on the SD as a
variability measure.

The Relative Variability Index in Big Data

We will first examine the relation between the mean M and the
standard deviation SD in three large data sets. We will show how
the SD is clearly related to the M while the SD� is not. To assess

the relation between two variables, four methods will be used.
First, the Pearson correlation �lin is used to investigate the linear
relation between the mean and, respectively, the SD and the SD�.
If the averages of the individuals are spread over the whole range,
as in Figure 2, we do not expect any linear correlations. Sometimes
however, most individuals have a mean closer to one of the
bounds, which may in fact lead to high Pearson correlations.
Second, because the Pearson correlation is only able to pick up the
linear dependence between the mean and the standard deviation,
we also use the distance correlation �dist (Székely, Rizzo, &
Bakirov, 2007) to examine their nonlinear dependence. The dis-
tance correlation between two variables is a measure of both
statistical linear and nonlinear dependence and ranges from zero
(both variables are independent) to one. Third, as we mainly
expect that the relation between the mean and the variability
measure is the result of the maximum possible variability
max(SD |M), we also calculate the Pearson correlation between
this max(SD |M) and both variability measures, the SD and the
SD�. Moreover, using big data sets gives us a fourth and more
intuitive way to assess the relation between the mean and the
variability measure: As each data consists out of a large number of
data points, dependence can be simply evaluated by inspecting
graphical representation of the data.

In a first big data example, we analyze data which was collected
through an online dating site (http://libimseti.cz/, Brozovsky &
Petricek, 2007). The data involve a total of 135,359 participants,
each rating at least 20 other participants as potential partners on
their attractiveness. Each rating is bounded between 1 and 10,
where 10 is the best possible attractiveness rating. Participants who
provided constant ratings were excluded. Together, all participants
made 17,359,346 online ratings. The intraindividual mean Mi,
standard deviation SDi and relative standard deviation SDi

� were
computed for each participant. The relation between the mean and
both variability measures is shown in Figure 4. Because of the
large amount of data, the shape of the maximum possible standard
deviation as a function of the mean can be traced out fairly well
when the SD is used. On the other hand, there seems to be no
relation between the M and the SD�. This can also be concluded
using the calculations of the Pearson correlation �lin the distance
correlation �dist and the correlation between the standard deviation
and its maximum (i.e., �exp) as shown in Table 3. The SD� is
clearly much more orthogonal to the mean M.

In a second big data example we study a data set collected using
the free smartphone application “58 seconds” that monitored emo-
tions in daily live (Trampe, Quoidbach, & Taquet, 2015). Using
the application, participants answered whether they experienced a
certain emotion or not. We will focus on the number of different
positive emotions (alertness, amusement, awe, gratitude, hope, joy,
love, pride, and satisfaction) participants felt at each specific time
point. We included 1,566 participants who used the application at
least 10 times, resulting in 33,862 completed questionnaires.
Again, the intraindividual mean Mi, standard deviation SDi, and
relative standard deviation SDi

* were computed for the number of
positive emotions reported across measurement occasions for each
subject. The relation between the mean and both variability mea-
sures is visualized in Figure 5. While it is clearly visible that there
is a relation between the M and the SD, the M and the SD� are
independent from each other. This is also reflected by the �lin the
�dist and the �exp as shown in Table 3.
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In a third big data example we show that this effect is not limited
to intraindividual variability measures, using data reflecting movie
ratings collected through the web site Movie Lens (https://movielens
.org/, Movie Lens, n.d.). We examined the data of 2,019 movies
which each had at least 100 ratings. In total 942,225 ratings where
included, ranging from 1 to 5 stars. For each movie we computed
the average rating Mi, and the variability in the ratings using the
standard deviation SDi and relative standard deviation SDi

*. In this
case of course, a data point does not refer to a person but to a
movie. The relation between the mean and the variability measures
is shown in Figure 6. This relation is quantified using the �lin the
�dist and the �exp in Table 3. For each of the three statistics, the
conclusion is the same. The M is much less related to the SD� as
to the SD.

We have now shown in three different large data sets across
three research contexts, we can expect a relation between the mean

M and the standard deviation SD with bounded scales. This implies
that any finding concerning a variable’s variability may be driven
by the mean, possibly leading to erroneous conclusions. In the
following two examples, we will illustrate how the use of the
relative variability can indeed lead to different results.

Application 1: Variability in Thoughts and Feelings

For this application, we analyzed an experience sampling (ESM)
data set, in which 95 participants were asked 10 times a day for 7
consecutive days about their momentary feelings and thoughts
(Koval, Pe et al., 2013; Pe, Koval, & Kuppens, 2013). In total, 20
variables were measured using sliders (such as anger, depression,
happiness, self-esteem, and several appraisals of the situation),
each bounded between 1 and 100.

In these data, we are interested in the relation between within-
person variability and an individual difference variable (for a
review of research related to such questions, see Houben et al.,
2015) such as, for instance, depressive symptom severity D (as
measured with the Center of Epidemiological Studies Depression
Scale; CES-D; Lewinsohn, Seeley, Roberts, & Allen, 1997). In
general, previous research has found that not only average levels of
psychological functioning but also its variability over time is
related to well-being (Houben et al., 2015; Kernis & Goldman,
2003). As previously explained, participants with a mean value
equal to one of the bounds will be excluded (typically one or two
participants depending on the specific variable).

The relation between the intraindividual standard deviation
and a third variable is traditionally studied by linear regression
from Equation 8a. However, if the mean is not taken into
account, any effect of the standard deviation may just be an
indirect effect of the mean. Therefore, sometimes, also Equa-
tion 8b is used. Still, as we explained above, it is not recom-
mended to use this linear correction if the mean and the stan-
dard deviation are related to each other. To see how the

Figure 4. Online dating data set (Brozovsky & Petricek, 2007). Variability of the user ratings versus the
average rating. On the left panel the normal standard deviation is used and on the right panel the relative standard
deviation is used. The red line is the maximum possible variability, max(SD |M) or max(SD� |M), given the mean
for the median number of ratings. In the left panel one can clearly see the inverse U-shape, following
max(SD |M). See the online article for the color version of this figure.

Table 3
The Relation Between the Mean M and the Variability Measures
SD and SD� Quantified Using the �lin (Pearson Correlation
Between M and SD or SD�), the �dist (the Distance Correlation
Between M and SD or SD�) and the �exp (the Pearson
Correlation Between SD or SD� and the max(SD|M)

�lin �dist �exp

Data set SD SD� SD SD� SD SD�

Online dating �.52 �.25 .51 .29 .57 �.012
Smartphone application .66 .08 .69 .20 .72 �.07
Movie rating data set �.56 �.22 .57 .25 .55 �.16

Note. This relation is examined for the online dating data set (Brozovsky
& Petricek, 2007), the smartphone application data set (Trampe et al.,
2015) and the movie rating data set (Movie Lens). For each data set, the M
is much less related to the SD� as to the SD. As the online dating data set
was too big to calculate the distance correlation, we estimated �dist using
100 random subsamples of 2,000 subjects.
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standard deviation SD is confounded by the mean M for each
variable, we again used the three correlation indices introduced
above: �lin the �dist and the �exp.

For the linear dependence, we found that the linear correlations
�lin range from �0.42 to 0.82 across the 20 variables. This out-
come is striking for several reasons. First, the correlation between
the mean and standard deviation is strongly variable-dependent,
with correlations ranging from very negative to extremely positive.
Second, due to the presence of large correlations for some ESM
variables, using a linear regression approach to correct for the
confound can result in multicollinearity. For example, a correlation
of 0.82 leads to a variance inflation factor of 3, which means that

the variances of regression weights �1 and �2 are inflated with a
factor of three due to the multicollinearity. This can result in a
serious decrease of power, skewing conclusions from such analy-
sis.

We also examined the nonlinear relation between the mean and
the variability using the �dist and the �exp. For this data set, we
found that the distance correlation �dist between the M and the SD
ranged from 0.15 to 0.81 across the 20 variables. The �exp ranged
from 0.08 to 0.83. Any nonlinear dependencies between the M and
the SD are completely ignored in Equation 8b.

Coefficient �1 of Equation 8b is commonly understood as the
expected change in CESD score if SD increases with one unit
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Figure 5. Smartphone application data set (Trampe et al., 2015). Variability of the number of positive emotions
versus the average number of positive emotions. On the left panel the normal standard deviation is used and on
the right panel the relative standard deviation is used. The red line is the maximum possible variability,
max(SD |M) or max(SD� |M), given the mean for the median number of completed questionnaires. See the online
article for the color version of this figure.
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Figure 6. Movie Lens data (Movie Lens, n.d.). Variability of the movie ratings versus the average movie
ratings. On the left panel the normal standard deviation is used and on the right panel the relative standard
deviation is used. The red line is the maximum possible variability, max(SD |M) or max(SD� |M), given the mean
for the median number of ratings per movie. In the left panel one can clearly see the inverse U-shape, following
max(SD |M). See the online article for the color version of this figure.
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while M is held constant. Due to the strong linear and nonlinear
dependencies between the mean M and the variability SD, this is a
contrived interpretation. It makes no sense to keep the M constant
while SD increases.

In a next step, the relative standard deviation SD� was calcu-
lated. For the linear dependence (using �lin) between the SD� and
the M, values were found that range from �0.21 to 0.28. As can be
seen in the left panel of Figure 7, for almost every variable, the
absolute value of the correlation between the variability and the
mean M decreased when we used the SD� instead of the SD.
Across all variables, the absolute value of the correlation decreased
on average from 0.49 to 0.12 (using a paired t-test, this result is
significant: t(19) � 6.605, p � 10�5).

Also the �dist and the �exp between the M and the SD� were much
lower as compared with the distance correlation between the M
and the SD. Across all the variables, the �dist decreased on average
from 0.51 to 0.22 (using a paired t test, this result is significant:
t(19) � 6.683, p � 10�5). The absolute value of the �exp decreased
on average from 0.56 to 0.10 (using a paired t test, this result is
significant: t(19) � 8.673, p � 10�7).

Note that these findings are not limited to the transition of the
standard deviation to the relative standard deviation. For other
variability measures, we find the similar results. For both the
RMSSD as the IQR, the �lin, the �dist and the �exp decrease
significantly across all the variables if their relative variability
variant is used instead (see Table 4).

The relative standard deviation and other relative variability
measures are clearly much less confounded (linearly and nonlin-
early) with the mean compared to the traditional variability mea-
sures. We propose therefore to study the relation of the variability
of the ESM variables with depressive symptom severity using
Equation 8c. As the relative standard deviation is much less
confounded by the mean as the standard deviation, we can now say
that any results derived from this equation are less influence by the
mean as the results derived from Equation 8b. It is however
notable that the use of Equation 8c may lead to straight out
different conclusions.

The results presented thus far jointly concern the 20 items. To
illustrate the results in a more vivid way, let us select one specific
ESM item for a more detailed analysis: self-esteem. Both the mean
level of self-esteem as well as the degree of variability over time
has been considered important for well-being and depression
(Franck et al., 2016; Hayes, Harris, & Carver, 2004; Kernis &
Goldman, 2003; Roberts & Gotlib, 1997; Wagner, Lüdtke, &
Trautwein, 2015), although the exact role remains unclear (Sow-
islo, Orth, & Meier, 2014). The Pearson correlation between the M
and the SD of self-esteem is �0.27. If the relative standard
deviation is used instead as in Equation 8b, the Pearson correlation
with the mean changes to �0.08. Similarly, the distance correla-
tion between the predictors decreases from 0.4 to 0.25 and the �exp

changes from 0.49 to �0.12 if the SD is replaced by the SD�.
When Equation 8a is used for relating depression to the vari-

ability of self-esteem it seems to be the case that variability of
self-esteem is related to depressive symptoms, �1 � 0.029, SE �
0.011, t(93) � 2.745, p � 0.007. However, by using Equation 8b
(linearly controlling for the mean), we find that this effect seems
to be an indirect effect of the mean. We find that the explained
variance of depressive symptoms rises by only 1%, as compared
with a regression with only the mean as predictor, resulting in a
total variance explained of 37%. The contribution of the standard
deviation in explaining depressive symptoms above and beyond
the mean is nonsignificant (�1 � 0.013, SE � 0.009, t(92) �
1.416, p � 0.160). However, when the relative standard deviation
is used (Equation 8c), the explained variance of depressive symp-
toms rises with a somewhat larger 4% (compared with 1%),
resulting in a total variance explained of 40%. The relative stan-
dard deviation is thus able to explain 3% more of the variance of
depressive symptoms. The effect of SD� on depression is now
again suggestive of evidence against the null hypothesis of no
contribution (�1 � 0.097, SE � 0.438, t(92) � 2.503, p � 0.014),
providing some evidence for the variability of self-esteem as a
predictor of levels of depressive symptoms. This result is not just
a side effect of the possible inflation or blow-up of the relative
standard deviation at the bounds. If we use a weighted linear

Figure 7. For 26 variables the relation between first the M and SD and second the M and the SD� is shown.
From left to right first the absolute value of the �lin then the �dist and last the absolute value of the �exp is shown.
The SD� is clearly much more independent from the mean compared to SD. See the online article for the color
version of this figure.
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regression with the weights of Equation 5 we find similar results
(�1 � 1.017, SE � 0.476, t(86.98) � 2.1366, p � 0.035). Here the
noninteger degrees of freedom are computed using Equation 6.

At last, to compare our method with a more involved method,
we discuss the results using an underlying logit normal distribu-
tion. Applying the coarsened approach of Lesaffre et al. (2007), we
estimate the latent mean Mlatent and the latent standard deviation
SDlatent for each participant. Already in the simulations in Figure
2 we showed that the logit normal distribution leads to an even
larger correction near the boundaries than the relative variability
measure. This translates itself in the self-esteem data as three clear
outliers which are shown in Figure 8. When these outliers are
included the Pearson correlation between Mlatent and SDlatent is
0.77. When they are excluded, as we propose to do in the following
analysis, the Pearson correlation reduces to a more realistic �0.03.
The relation of SDlatent with the relation of depression can again be
studied using the regression of Equation 8f. Also here, the effect of
SDlatent on depression is suggestive of evidence against the null
hypothesis of no contribution (�1 � 0.311, SE � 0.125, t(89) �
2.494, p � 0.014). This conclusion does not change if the outliers
are included.

Ignoring the mean, it seems to be clear that the variability of
self-esteem (as measured by the traditional standard deviation)
contributed significantly to explaining levels of depressive symp-

toms. However, over and above the mean, there is no evidence that
variability of self-esteem contributes in explaining levels of de-
pressive symptoms. When using the relative standard deviation,
more variance in depressive symptoms was explained. A similar
result can be found by assuming a latent logit normal distribution.
The latter approach is however more complicated, overcorrects
and inflates variabilities of several participants and leads to dif-
ferent values of the mean M as are normally used which makes it
backward incompatible.

Application 2: Emotional Variability in Borderline
Personality Disorder

In the next application we will again examine ESM data, in
which 34 inpatients diagnosed with borderline personality disorder
(BPD) and 30 matched healthy participants were prompted 10
times a day, during 8 days to complete a questionnaire about the
emotions and thoughts they were currently experiencing (Houben
et al., 2016). In total, 18 momentary variables were measured
using sliders (such as anger, depression, excitement, and disap-
pointment), each bounded between 0 and 100.

Emotion dysregulation is commonly seen as a core symptom of
BPD (Lieb, Zanarini, Schmahl, Linehan, & Bohus, 2004; Linehan,
1993). In fact, emotional instability is an important diagnostic

Table 4
The Relation Between the Mean and Several Variability Measures of 26 Emotion Items From
Application 1 (See Text for More Information)

|�lin | �dist �exp

Index Min Max Average Min Max Average Min Max Average

SD .03 .82 .49 .15 .81 .51 .08 .83 .56
SD� .03 .28 .12 .12 .37 .22 .01 .27 .10
RMSSD .00 .72 .41 .16 .72 .45 .03 .78 .52
RMSSD� .00 .32 .15 .15 .34 .24 .00 .40 .24
IQR .21 .91 .56 .31 .90 .61 .12 .82 .56
IQR� .15 .57 .34 .26 .54 .38 .01 .51 .26

Note. Quantified using the dependencies |�lin | , the �dist and the �exp. We compute for each variability measure
the minimum, the maximum and the average of the dependencies over 26 variables. If relative variability
measures are used instead of classical variability measures, the |�lin | , the �dist and the �exp decrease.
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Figure 8. The relation between the mean and standard deviation for self-esteem. From left to right we first
show the mean and the normal standard deviation, then the mean and the relative standard deviation, and last the
latent mean and the latent standard deviation of the logit normal distribution. One can visually distinguish three
outliers in the last plot. These points are shown in all plots using red crosses. See the online article for the color
version of this figure.
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criterion for BPD (American Psychiatric Association, 2013). In-
deed, in a recent meta-analysis Houben et al. (2015) found that
BPD is significantly characterized by high levels of emotional
variability, particularly of negative emotions. Consequently, here
we will examine to what extent individuals diagnosed with BPD
display higher levels of negative emotion variability compared
with healthy controls, both for a composite negative affect scale
(calculated as the average of the ESM variables anger, depressive,
anxious, stressed, disappointed in the self, and disappointed in
another), and for one specific negative item (i.e., depressed). We
hypothesize that borderline patients have a higher variability, more
specifically a higher standard deviation, in depressive feelings and
negative affect.

To study the relation between emotion variability and borderline
personality disorder we make use of the logistic regression. Sim-
ilarly, as in the previous analysis, in a first step, we do not take the
mean into account:

odds(borderlinei) � e(�0��1SDi), (9)

(where Pr(borderlinei) is the probability that person i has BPD) and
SDi is the standard deviation of depressed feelings or negative
affect for subject i. Using Equation 9, for both the depressed
feelings (�1 � 0.172, SE � 0.045, t(52) � 3.061, p � 0.0001) and
negative affect (�1 � 0.342, SE � 0.089, t(58) � 3.061, p �
0.0001) we found a significant difference between the two groups
in terms of emotional variability.

It is however possible that this effect is mainly driven by the mean.
There is indeed a correlation �lin of about 0.65 between the mean and
the variability of both the depressed feeling and the negative affect
(see Table 5). In such a case, the least one should do is linearly
correct for the mean, using equation:

odds(borderlinei) � e(�0��1SDi��2Mi).

Using this logistic regression we find less explicit results. For
both depressed feelings (�1 � 0.108, SE � 0.054, t(51) � 1.995,
p � 0.046) and negative affect (�1 � 0.220, SE � 0.116, t(57) �
1.903, p � 0.057), we find only suggestive evidence against the
null hypothesis of no contribution for the standard deviation (be-
yond the mean).

However, also for a logistic regression, for the same reasons as
explained for the linear regression, highly dependent predictors
should be avoided. For example, the expected correlation �exp

between the mean and the standard deviation of the feeling de-
pressed is 0.84. This means that �exp

2 � 0.842 � 0.70 (or 70%) of

the variance of standard deviation can be explained by a function
of the mean (i.e., max(SD |M)). The standard deviation is again
confounded by the mean. We therefore propose to use the relative
standard deviation which is much less dependent on the mean, as
is shown in Table 5. Using equation

odds(borderlinei) � e(�0��1SDi
*��2Mi),

there is no more room for discussion. For both depressed feelings
(�1 � �0.573, SE � 1.640, t(51) � �0.349, p � 0.727) and
negative affect (�1 � 5.8805, SE � 4.526, t(57) � 1.293, p �
0.194), we find that there is no evidence against the null hypothesis
of no contribution of the standard deviation. In addition, for
depressed feelings, the regression estimate even switches signs if
the relative standard deviation is used instead of the normal stan-
dard deviation. Also in this example, the result is robust against the
inflation or blow-up effect at the bounds as using a weighted
logistic regression leads to the same conclusions for both de-
pressed feelings (�1 � 3.4033, SE � 3.3026, t(31.99) � 1.0305,
p � 0.303) as negative affect (�1 � 8.5244, SE � 5.97, t(39.97) �
1.429, p � 0.153) �1 � 0.1200, SE � 0.177, t(49) � 0.676, p �
0.499) �1 � 0.0830, SE � 0.287, t(57) � 0.289, p � 0.773).

Disregarding the mean, we would have concluded that a higher
standard deviation of depressed feelings and negative affect is
clearly a feature of borderline patients. By linearly correcting for
the mean, some researchers still might have concluded that the
standard deviation of negative emotions is indeed higher for bor-
derline patients. Using the relative standard deviation, however,
these data suggest that any difference between groups in standard
deviation is just a side effect of the mean. This effect is striking,
given that emotional instability is a diagnostic feature of BPD. If
this finding is robust and replicated, it may have consequences for
the diagnostic criteria of BPD.

Discussion

In many areas of psychological research, the causes, conse-
quences, and correlates of levels of variability in feelings,
thoughts, and behavior (either within or between individuals) are
being investigated. It has been long and well known that when
studying questions involving variability, results can be clouded
due to confounding of measures of variance with the mean, espe-
cially in the case of bounded measurements. Until now, there has
been no single solution that can disentangle the effects of variabil-
ity measures from the effects of the mean in all circumstances.
Here, we proposed a novel metric of variability measures, called
relative variability. The set of new proposed measures is indepen-
dent from the mean, and allows researchers to draw precise con-
clusions about how variability relates to other phenomena.

We derived analytical solutions and provide a software package
which allows the fast calculation of the relative variability measure
for the standard deviation, the root mean squared successive dif-
ference, the interquartile range, and the range.

In five real-life data sets we showcased the dependency between
the mean and the standard deviation. For most data sets, more than
half of the variance of the SD is explained by a function of the
mean, clearly demonstrating the need for indices of variability that
are free of this confound. Moreover, in two applications involving
the relation between variability and third variables, we showed that

Table 5
The Relation Between the Mean M and the Variability Measures
SD and SD� Quantified Using the �lin the �dist and the �exp for
Application 2

�lin �dist �exp

ESM variable SD SD� SD SD� SD SD�

Depressed .62 �.17 .68 .28 .84 �.29
Negative affect .65 �.12 .69 .21 .79 �.12

Note. This relation is shown here for depressed feelings and negative
affect. Results are similar but less pronounced for the other feelings and
emotions measured with this ESM data set (Houben et al., 2016).
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using the relative variability index may lead to (radically) different
conclusions.

Our relative variability index bears a lot of similarity with the
coefficient of variation, except that is suited for measures bounded
both from below and above (while the coefficient of variation is
only used for measures bounded from below).

A number of criticisms may be raised against the relative
variability measure. First, the relative variability index may inflate
or blow-up variabilities close to the bounds. Of course, this is a
direct consequence of the way the index is defined. This property
is shared with the coefficient variation. Luckily we know exactly
how much this variability index is inflated so we can quantify this
extra uncertainty and take it into account in later analyses by an
appropriate weighting. Of course, if a researcher would, for some
theoretical reasons, be certain that the variability of data near the
bounds is correctly measured as close to zero, the inflating relative
variability index should not be used. However, such a certainty is
a rare privilege for most researchers. In any case we recommend,
even if our relative variability is not used, to apply a more
conservative weighted analysis to make sure the results are not too
influenced by observations close to the bound.

A second criticism of the relative variability measure is that it
takes too much for granted that the measurements are continuous
and that performing certain operations (e.g., calculating the mean)
are meaningful. This has been an assumption we made throughout
the article. If there are reasons to doubt the validity of this
assumption (e.g., when a 3-point scale is used), then the only thing
to do is to use a latent variable model for ordered categories, but
with a person-specific (latent) variability. The most straightfor-
ward way to fit such models is by turning to the Bayesian frame-
work and by using software such as JAGS (Plummer, 2003).

A crucial assumption of the relative variability index is that each
participant uses the given objective bounds or mapping function in
her replies. However, if some participants for example refuse to
use a part of the scale, their subjective bounds may not be equal to
the real objective bounds. This may lead to a loss of the validity of
the relative variability. Unfortunately, disentangling different
bounds, different mapping functions and differences in variability
is not an easy task and one may wonder whether it is possible at all.

In sum, we have proposed the relative variability index as an
easy-to-compute and easy-to-understand variability measure with-
out a confound by the mean. In a number of applications, it is
shown that the relative variability index serves its purpose.

Code and Data Availability

Our method is implemented in R and MATLAB, the software
package and all data and code necessary to replicate the real data
examples in this article can be downloaded at http://ppw.kuleuven
.be/okp/software/relative_variability/
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